MQL5言語での戦略テストに関する記事

icon

どのように取引戦略を開発し、記述し、テストするか、どのように最適なシステムパラメータを見つけるか、どのようにその結果を分析するか?MetaTraderプラットフォームは自動売買ロボットの開発者に、トレーディングアイデアを速く正確にテストするための豊富な機能を提供します。この記事を読んで、どのように複数通貨ロボットをテストするか、どのように最適化を目的としてMQL5Cloud Networkを使用するかを学んでください。

自動取引システムの開発者はテスティングの基本とストラテジーテスターの中のティック生成アルゴリズムについて読むことから始めることをお勧めします。

新しい記事を追加
最新 | ベスト
preview
リプレイシステムの開発(第51回):物事は複雑になる(III)

リプレイシステムの開発(第51回):物事は複雑になる(III)

この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰

線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。
preview
MQL5入門(第9回):MQL5のオブジェクトの理解と使用

MQL5入門(第9回):MQL5のオブジェクトの理解と使用

現在のデータと履歴データを使用して、MQL5でチャートオブジェクトを作成およびカスタマイズする方法を学びます。このプロジェクトベースのガイドは、取引を可視化し、MQL5の概念を実際に適用するのに役立ち、取引のニーズに合わせたツールの構築が容易になります。
preview
人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)アルゴリズム

人工協調探索(ACS)は、バイナリ行列と、相互主義的関係と協調に基づく複数の動的な個体群を用いて、最適解を迅速かつ正確に探索する革新的な手法です。捕食者と被食者に対するACS独自のアプローチにより、数値最適化問題で優れた結果を出すことができます。
preview
PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5でロボットを開発する(第2回):モデルの選択、作成、訓練、Pythonカスタムテスター

PythonとMQL5で自動売買ロボットを開発する連載を続けます。今日は、モデルの選択と訓練、テスト、交差検証、グリッドサーチ、モデルアンサンブルの問題を解決します。
preview
リプレイシステムの開発(第50回):物事は複雑になる(II)

リプレイシステムの開発(第50回):物事は複雑になる(II)

チャートIDの問題を解決すると同時に、ユーザーが希望する資産の分析とシミュレーションに個人用テンプレートを使用できるようにする機能を提供し始めます。ここで提示される資料は教育目的のみであり、提示される概念の学習および習得以外の目的には決して適用されないものとします。
preview
リプレイシステムの開発(第49回):物事は複雑になる(I)

リプレイシステムの開発(第49回):物事は複雑になる(I)

この記事では、物事は少し複雑になります。前回の記事で紹介した内容を使用して、ユーザーが独自のテンプレートを使用できるようにテンプレート ファイルを開きます。ただし、MetaTrader 5の負荷を軽減するために指標を改良していく予定なので、変更は徐々におこなっていく予定です。
preview
リプレイシステムの開発(第48回):サービスの概念を理解する

リプレイシステムの開発(第48回):サービスの概念を理解する

何か新しいことを学んでみませんか。この記事では、スクリプトをサービスに変換する方法と、それがなぜ便利なのかについて説明します。
preview
リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

ついに、Chart Trade指標はEAと相互作用を開始し、情報をインタラクティブに転送できるようにします。そこで今回は、この指標を改良し、どのEAでも使えるような機能的なものにします。これにより、Chart Trade指標にアクセスし、実際にEAに接続されているかのように操作できるようになります。しかし、以前よりもずっと興味深い方法でそれをおこなうつもりです。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザー(EA)の開発 (II)

独立したEAについて考えてみましょう。前回は、リスクとリターンのジオメトリを描くために独立したスクリプトと連携する、指標ベースのEAについて説明しました。今回は、すべての機能を1つのプログラムに統合したMQL5 EAのアーキテクチャについて解説します。
preview
Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)

Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)

今回は、前回の記事で作成した指標を元に、MQL5で最初のエキスパートアドバイザー(EA)を作成します。リスク管理を含め、取引プロセスを自動化するために必要な全機能を紹介します。これにより、手動の取引執行から自動化されたシステムへとスムーズに移行できるメリットがあります。
preview
多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)

良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。
preview
リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)

リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)

アプリケーションを動作させるために必要なファイルを探すのに時間を浪費していませんか。すべてを実行ファイルに含めてみてはどうでしょうか。そうすれば、ファイルを探す必要がなくなります。多くの人がこのような配布・保管方法を採用していることは知っていますが、少なくとも、実行ファイルの配布や保管に関してはもっと適切な方法があります。ここで紹介する方法は、MQL5だけでなく、MetaTrader 5そのものを優れたアシスタントとして使うことができるので、非常に便利です。しかも、理解するのはそれほど難しくありません。
preview
初心者からエキスパートへ:MQL5取引のエッセンシャルジャーニー

初心者からエキスパートへ:MQL5取引のエッセンシャルジャーニー

潜在能力を引き出しましょう。あなたはチャンスに囲まれています。MQL5の旅をスタートさせ、次のレベルへと引き上げる3つの秘訣をご覧ください。初心者にもプロにも役立つヒントやトリックをご紹介します。
preview
多通貨エキスパートアドバイザーの開発(第9回):単一取引戦略インスタンスの最適化結果の収集

多通貨エキスパートアドバイザーの開発(第9回):単一取引戦略インスタンスの最適化結果の収集

EA開発の主な段階を概説しましょう。最初におこなうべき重要な作業の1つは、開発した取引戦略のインスタンスを最適化することです。最適化プロセスにおいて、テスターが通過したパスに関する必要な情報を一箇所に集約してみましょう。
preview
多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

多通貨エキスパートアドバイザーの開発(第8回):新しいバーの負荷テストと処理

進歩に伴い、1つのEAでより多くの取引戦略インスタンスを同時に実行するようになりました。リソースの限界に達する前に、どのくらいのインスタンスが利用可能かを検討することが重要です。
preview
リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)

リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)

この記事の主な目的は、C_ChartFloatingRADクラスの紹介と説明です。Chart Trade指標は、非常に興味深い方法で機能しています。チャート上のオブジェクトの数はまだ少ないものの、期待通りの機能を実現しています。指標の値は編集可能ですが、その実現方法については疑問が残るかもしれません。この記事を読めば、これらの疑問が解消されるでしょう。
preview
リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)

リプレイシステムの開発(第44回):Chart Tradeプロジェクト(III)

前回の記事では、OBJ_CHARTで使用するテンプレートデータの操作方法について解説しました。ただし、あの記事ではトピックの概要に焦点を当て、詳細な部分には触れていませんでした。これは、説明をよりシンプルにするために、非常に簡略化された手法を用いたからです。物事は一見シンプルに見えることが多いですが、実際にはそうではないケースもあり、全体を正確に理解するためには、まず最も基本的な部分をしっかり押さえる必要があります。
preview
多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択

多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択

以前は、個々のインスタンスの最適化が実施されたのと同じ期間においてのみ、共同運用の結果を改善する目的で、取引戦略インスタンスグループの選択を評価しました。フォワード期間中に何が起こるか見てみましょう。
preview
母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)

母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)

(WOA)は、ザトウクジラの行動と狩猟戦略に着想を得たメタヒューリスティクスアルゴリズムです。WOAの主なアイデアは、クジラが獲物の周囲に泡を作り、螺旋状の動きで獲物に襲いかかる、いわゆる「バブルネット」と呼ばれる捕食方法を模倣することです。
preview
母集団最適化アルゴリズム:ボイドアルゴリズム

母集団最適化アルゴリズム:ボイドアルゴリズム

この記事では、動物の群れ行動のユニークな例に基づいたボイドアルゴリズムについて考察しています。その結果、ボイドアルゴリズムは、「群知能(Swarm Intelligence)」の名の下に統合されたアルゴリズム群全体の基礎となった。
preview
多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

多通貨エキスパートアドバイザーの開発(第6回):インスタンスグループ選択の自動化

取引戦略を最適化した後、パラメータのセットを受け取ります。これらを使用して、1つのEAに複数の取引戦略のインスタンスを作成することができます。以前は手動でおこないましたが、ここでは、このプロセスの自動化を試みます。
preview
最適化アルゴリズムの効率における乱数生成器の品質の役割

最適化アルゴリズムの効率における乱数生成器の品質の役割

この記事では、メルセンヌ・ツイスタ乱数生成器を取り上げ、MQL5の標準的な乱数生成器と比較します。また、乱数生成器の品質が最適化アルゴリズムの結果に与える影響についても調べます。
preview
母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

母集団アルゴリズムのハイブリダイゼーション:逐次構造と並列構造

ここでは、最適化アルゴリズムのハイブリダイゼーションの世界に飛び込み、3つの主要なタイプ、すなわち戦略混合、逐次ハイブリダイゼーション、並列ハイブリダイゼーションについて見ていきます。関連する最適化アルゴリズムを組み合わせ、テストする一連の実験をおこないます。
preview
多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ

前回開発中のエキスパートアドバイザー(EA)は、固定されたポジションサイズのみを使用して取引をおこなうことができました。これはテスト用には許容できますが、実際の口座で取引する場合にはお勧めできません。可変のポジションサイズで取引できるようにしましょう。
preview
GIT:それは何か?

GIT:それは何か?

今回は、開発者にとって非常に重要なツールを紹介しましょう。GITに馴染みのない方は、この記事を読んでGITとは何か、MQL5でどのように使用するかをご覧ください。
preview
リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

プログラミングを学びたいと夢見る人のほとんどは、実際に自分が何をしているのかわかっていません。彼らの活動は、ある方法で物事を創造しようとすることから成っています。しかし、プログラミングとは、適切な解決策を仕立てることではありません。このようなやり方は、解決策よりも多くの問題を引き起こす可能性があります。ここでは、より高度で、それゆえに異なることをします。
preview
リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)

リプレイシステムの開発(第42回):Chart Traderプロジェクト(I)

もっと面白いものを作りましょう。ネタバレはしたくないので、理解を深めるために記事を読んでください。リプレイ/シミュレーターシステムの開発に関する本連載の最初の段階から、私は、開発中のシステムと実際の市場の両方で同じようにMetaTrader 5プラットフォームを使用することがアイディアであると述べてきました。これが適切におこなわれることが重要です。ある道具を使用して訓練して戦い方を学んだ末、戦いの最中に別の道具を使用しなければならないというようなことは誰もしたくありません。
preview
PythonとMQL5を使用した取引戦略の自動パラメータ最適化

PythonとMQL5を使用した取引戦略の自動パラメータ最適化

取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。
preview
知っておくべきMQL5ウィザードのテクニック(第23回):CNN

知っておくべきMQL5ウィザードのテクニック(第23回):CNN

畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。
preview
母集団最適化アルゴリズム:極値から抜け出す力(第I部)

母集団最適化アルゴリズム:極値から抜け出す力(第I部)

本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。
preview
効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス

この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。
preview
母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。
preview
リプレイシステムの開発(第41回):第2段階(II)の開始

リプレイシステムの開発(第41回):第2段階(II)の開始

もし、この時点まですべてが正しく思えたとしたら、それはアプリケーションの開発を始めるときに、長期的なことをあまり考えていないということです。時間が経つにつれて、新しいアプリケーションをプログラムする必要はなくなり、それらを連携させるだけで済むようになります。それでは、マウス指標を組み立てる方法を説明しましょう。
preview
リプレイシステムの開発(第40回):第2段階の開始(I)

リプレイシステムの開発(第40回):第2段階の開始(I)

今日は、リプレイ/シミュレーターシステムの新しい段階について話しましょう。この段階で、会話は本当に面白くなり、内容もかなり濃くなります。記事を熟読し、そこに掲載されているリンクを利用することを強くお勧めします。そうすることで、内容をより深く理解することができます。
preview
リプレイシステムの開発(第39回):道を切り開く(III)

リプレイシステムの開発(第39回):道を切り開く(III)

開発の第2段階に進む前に、いくつかのアイデアを修正する必要があります。MQL5に必要なことをさせる方法をご存知ですか。ドキュメントに書かれている以上のことをしようとしたことはありますか。そうでないなら、準備をしましょう。ここでは、ほとんどの人が普段やらないことをやるからです。
preview
ビル・ウィリアムズ戦略:他の指標と予測の有無による比較

ビル・ウィリアムズ戦略:他の指標と予測の有無による比較

この記事では、ビル・ウィリアムズの有名な戦略の1つを取り上げ、それについて議論し、他の指標や予測を用いて戦略の改善を試みます。
preview
知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索

知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索

ニューラルアーキテクチャー探索は、理想的なニューラルネットワーク設定を決定するための自動化されたアプローチで、多くのオプションや大規模なテストデータセットに直面したときにプラスになります。固有ベクトルをペアにすることで、この過程がさらに効率的になることを検証します。
preview
MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

この第4部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルグリッドEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。
preview
母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

前回に引き続き、社会的集団について考えてみたいと思います。この記事では、移動と記憶のアルゴリズムを用いて社会集団の進化を探求しています。その結果は、社会システムの進化を理解し、最適化や解の探索に応用するのに役立つでしょう。