
母集団最適化アルゴリズム:蟻コロニー最適化(ACO)
今回は、蟻コロニー最適化アルゴリズムについて解析します。このアルゴリズムは非常に興味深く、複雑です。この記事では、新しいタイプのACOの作成を試みます。

母集団最適化アルゴリズム:粒子群(PSO)
この記事では、一般的な粒子群最適化(PSO)アルゴリズムについて検討します。以前は、収束、収束率、安定性、スケーラビリティなどの最適化アルゴリズムの重要な特性について説明し、テストスタンドを開発し、最も単純なRNGアルゴリズムを検討しました。

Frames Analyzerツールによるタイムトレード間隔の魔法
Frames Analyzerとは何でしょうか。これは、パラメータ最適化の直後に作成されたMQDファイルまたはデータベースを読み取ることにより、ストラテジーテスター内外でパラメータ最適化中に最適化フレームを分析するためのエキスパートアドバイザー(EA)のプラグインモジュールです。これらの最適化の結果はFrames Analyzerツールを使用している他のユーザーと共有して、結果について話し合うことができます。

知っておくべきMQL5ウィザードのテクニック(第03回):シャノンのエントロピー
今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探し、試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがトレーダーの主力であるべきであることを示します。

一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?
今日は再びChart Tradeを使用しますが、今回はチャート上に存在する場合と存在しない場合があるオンチャート指標になります。


母集団最適化アルゴリズム
最適化アルゴリズム(OA)の分類についての入門記事です。この記事では、OAを比較するためのテストスタンド(関数群)を作成し、広く知られたアルゴリズムの中から最も普遍的なものを特定することを試みています。


市場の数学:利益、損失、コスト
この記事では、手数料やスワップなど、あらゆる取引の総損益を計算する方法を紹介します。最も正確な数学的モデルを提供し、それを使ってコードを書き、標準と比較するつもりです。そのほか、利益を計算するMQL5のメイン関数の内部にも入り込み、仕様から必要な値をすべて突き詰めてみます。

ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。

知っておくべきMQL5ウィザードのテクニック(第01回):回帰分析
今日のトレーダーは哲学者であり、ほとんどの場合(意識的かどうかにかかわらず...)新しいアイデアを探し、試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。トレーダーの時間とミスを避ける必要性は明らかに重視されます。この連載では、MQL5ウィザードがトレーダーの主力であるべきであることを示します。なぜでしょうか。MQL5ウィザードを使用すれば、新しいアイデアを組み立てることで時間を節約できるだけでなく、コーディングの重複によるミスを大幅に減らすことができるため、最終的に、取引の哲学のいくつかの重要な分野にエネルギーを注ぐことができるからです。

ニューラルネットワークの実験(第1回):幾何学の再検討
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。

マーケットからエキスパートアドバイザーを選択する正しい方法
この記事では、エキスパートアドバイザーを購入する際に注意すべき重要なポイントのいくつかを検討します。また、利益を増やし、お金を賢く使ってこの支出から利益を得る方法を探します。また、記事を読み終われば、シンプルで無料の製品を使用しても収益を得られることがわかると思います。

最適化結果の視覚的評価
この記事では、すべての最適化パスのグラフを作成する方法と、最適なカスタム基準を選択する方法について検討します。また、Webサイトに公開されている記事とフォーラムのコメントを使用して、MQL5の知識がほとんどない状態で目的のソリューションを作成する方法についても説明します。

時間の取扱い(第2部): 関数
証券会社のオフセットとGMTを自動で特定します。おそらく不十分な答えしかくれない(欠如した時間について説明することはいとわないでしょうが)証券会社にサポートを求める代わりに、時間が変わる週に証券会社が価格をどのように計算するかを自分で見ます。結局のところ、私たちはPCを持っているので、面倒な手作業ではなくプログラムを使用します。

時間の取扱い(第1部):基本
時間の処理、証券会社のオフセット、夏時間または冬時間への変更を簡素化および明確化する関数とコードスニペット。正確なタイミングは取引において重要な要素になることがあります。現在時刻でロンドンやニューヨークの証券取引所がすでに開いているかまだ開いていないか、外国為替取引の取引時間はいつ開始および終了するかなどです。手動で取引して生活しているトレーダーにとって、これは大きな問題ではありません。

取引のための組合せ論と確率論(第I部):基本
この連載では、確率論の実用的応用を見つけて、取引と価格設定のプロセスの説明を試みます。最初の記事では、組合せ論と確率の基礎を調べ、確率論の枠組みでフラクタルを適用する方法の最初の例を分析します。

パターン検索への総当たり攻撃アプローチ(第IV部): 最小限の機能
本稿では、前の記事で設定した目標に基づいて改良された総当たり攻撃バージョンについてお話します。エキスパートアドバイザーをこの方法で取得した設定で使用して、このトピックをできるだけ広くカバーするようにします。新しいプログラムバージョンも添付されています。

自動取引のための便利でエキゾチックな技術
本稿では、自動取引のためのいくつかの非常に興味深く有用な技術を紹介します。それらのいくつかには馴染みがあるかもしれません。最も興味深い手法を取り上げ、なぜ使用する価値があるのかを説明します。さらに、これらの技術の実際面での傾向を示します。エキスパートアドバイザーを作成し、説明されているすべての技術を相場履歴を使用してテストします。

パターン検索への総当たり攻撃アプローチ(第III部): 新しい水平線
本稿では、総当たり攻撃のトピックを続けます。プログラムアルゴリズムに市場分析の新しい機会を導入することで分析速度を高め、結果の品質を向上します。新しい追加により、このアプローチ内でグローバルパターンの最高品質で表示できるようになります。

パターン検索への総当たり攻撃アプローチ(第II部): イマージョン
本稿では、引き続き総当たり攻撃アプローチについて説明します。改良されたアプリケーションの新バージョンを使用して、パターンをより良く説明を試みます。また、さまざまな時間間隔と時間枠を使用して、安定性の違いの特定も試みます。

継続的なウォークフォワード最適化(その8)。プログラムの改善と修正
本連載では、ユーザーや読者の皆様からのご意見・ご要望をもとに、プログラムを修正しています。 この記事では、オートオプティマイザーの新バージョンを掲載しています。 このバージョンでは、要求された機能を実装し、他の改善点を提供しています。

並列粒子群最適化
本稿では、粒子群アルゴリズムを使用した高速最適化の手法について説明しています。また、この手法のMQLでの実装を提示します。これは、エキスパートアドバイザー内のシングルスレッドモードとローカルテスターエージェントで実行されるアドオンとしての並列マルチスレッドモードの両方ですぐに使用できます。

取引システムの開発における勾配ブースティング(CatBoost)素朴なアプローチ
PythonでCatBoost分類器を訓練してモデルをmql5にエクスポートし、モデルパラメータとカスタムストラテジーテスターを解析します。Python言語とMetaTrader5ライブラリは、データの準備とモデルの訓練に使用されます。

カスタムシンボル。実用的な基礎
この記事では、クオートを表示するための一般的な方法を示すために、カスタムシンボルプログラムの生成を行います。 派生したカスタムシンボルチャートから実際のシンボルをトレードするためのEAにおける提案された亜種についても説明します。 この記事にはMQLのソースコードが添付されています。

取引におけるニューラルネットワークの実用化(実践編)
本稿では、Matlabプラットフォームでニューラルネットワークモジュールを実際に使用するための説明と手順を説明します。また、ニューラルネットワークモジュールを使用した取引システム作成の主な側面についても説明します。1つの記事で複合体を紹介できるようにするには、複数のニューラルネットワークモジュール機能を1つのプログラムに組み合わせるように変更する必要がありました。

連続的なウォークフォワード最適化(その7)。オートオプティマイザの論理部分をグラフィックスでバインドし、プログラムからグラフィックスを制御する
この記事では、オートオプティマイザプログラムのグラフィカルな部分と論理的な部分の接続について説明します。 ボタンクリックから最適化マネージャへのタスクリダイレクトまで、最適化の起動プロセスを考慮します。

連続的なウォークフォワード最適化(その6):オートオプティマイザの論理部分と構造
記事3と4以前、我々は自動ウォークフォワード最適化の作成を検討しました。 今回は、オートオプティマイザツールの内部構造について進めていきます。 この記事は、作成したプロジェクトをさらに稼働したい方、修正したい方はもちろん、プログラムのロジックを理解したい方にも役立つ内容となっています。 今回の記事では、プロジェクトの内部構造とオブジェクト間の関係を示すUML図を掲載します。 また、最適化開始までの過程が記述されていますが、オプティマイザの実装過程が記述されていない状態です。

連続ウォークフォワード最適化(パート5):自動オプティマイザプロジェクトの概要とGUIの作成
この記事では、MetaTrader5 ターミナルでのウォークフォワード最適化の詳細を説明します。 以前の記事では、最適化レポートを生成およびフィルタリングする方法を検討し、最適化プロセスを担当するアプリケーションの内部構造の分析を開始しました。 自動オプティマイザは C# アプリケーションとして実装され、独自のグラフィカル インターフェイスを備えています。 5番目となるこの記事では、このグラフィカルインタフェースの作成に専念します。

連続ウォークフォワード最適化(パート4):最適化マネージャ(オートオプティマイザ)
この記事の主な目的は、アプリケーションとその機能を操作するメカニズムについて説明することです。 したがって、この記事は、アプリケーションの使用方法に関する説明書としても使うことができます。 アプリケーションの使用法においてありがちな落とし穴と詳細を扱っています。

連続ウォークフォワード最適化(パート3):ロボットをオートオプティマイザに適応させる
3番目であるこの記事は、前の 2 つの記事間のブリッジとして機能します。最初の記事で検討されている.dll との相互作用のメカニズムと、2 番目の記事で説明したレポートダウンロード用のオブジェクトについて説明します。 DLLからインポートし、トレードヒストリーを持つXMLファイルを形成するクラスのラッパ作成のプロセスを分析します。 このラッパとデータのやり取りするメソッドも検討します。

連続ウォークスルー最適化(パート2):ロボットの最適化レポート作成のメカニズム
ウォークスルー最適化シリーズの最初の記事では、自動オプティマイザで使用するDLLの作成について説明しました。 今回は完全にMQL5言語に専念します。

SQLite: MQL5 での SQL データベースのネイティブな処理
トレード戦略の開発には、大量のデータの処理が関連しています。 今では、MQL5 で直接 SQLite に基づいた SQL クエリを使用してデータベースを操作できるようになりました。 このエンジンの重要な特徴は、データベース全体がユーザーのPC上の単一のファイルに配置されるということです。


Boxplotによる金融時系列のシーズンパターンの探索
この記事では、Boxplotを使用して価格時系列のシーズン特性を表示します。 各Boxplot(あるいは"ボックスアンドウイスキーダイアグラム") は、データセットに沿って値がどのように分布しているかを示す優れたものです。 Boxplotは、視覚的に似ていますが、ローソク足チャートと混同しないでください。

連続歩行順最適化(パート1):最適化レポートの使用
最初の記事では、最適化レポートを操作するためのツールキットの作成、ターミナルからのインポート、取得したデータのフィルタリングとソートに関する説明を行います。 MetaTrader5では最適化結果のダウンロードが可能ですが、今回の目的は最適化レポートに独自のデータを追加することです。


MQL5クックブック:カスタムシンボルを使用したトレーディング戦略ストレステストe
この記事では、カスタムシンボルを使用したトレーディング戦略のストレステストへのアプローチを検討します。 このため、カスタムシンボルクラスを作成します。 このクラスは、サードパーティのソースからティックデータを受信するため、シンボルプロパティを変更するために使用します。 タスクの結果に基づいて、トレード条件を変更するためのオプションを検討し、その下でトレード戦略をテストします。


最適化管理(パートII): キーオブジェクトとアドオンロジックの作成
本稿は、以前の最適化管理用のグラフィカルインターフェイスの作成に関する記事の続きです。本稿では、アドオンのロジックについて検討しています。MetaTrader 5ターミナルのラッパーが作成され、アドオンをC#を介した管理プロセスとして実行できるようにします。また、構成ファイルとセットアップファイルを使用した操作についても検討します。アプリケーションのロジックは2つの部分に分かれています。最初の部分では特定のキーを押した後に呼び出されるメソッドを記述し、2番目の部分では最適化の起動と管理を扱います。


メリルパターン
本稿では、メリルパターンのモデルを見て、それらの現在の関連性を評価します。これを行うために、パターンをテストし、終値、高値、安値、オシレータなどのさまざまなデータタイプにモデルを適用するツールを開発します。


最適化管理 (パート I): GUI の作成
この記事では、MetaTrader ターミナルの拡張機能を作成するプロセスについて説明します。 このソリューションは、他のターミナルで最適化を実行する際、最適化プロセスを自動化するのに役立ちます。 このトピックに関する記事をいくつか書きます。 拡張機能は C# 言語とデザイン パターンを使用して開発されました。優先プログラミング言語の機能です。


直近のピップのプロフィットダウンを抽出
この記事では、アルゴリズムトレード分野における理論と実践を組み合わせる試みについて説明します。 トレーディングシステムの作成に関する考察のほとんどは、ヒストリーバーや適用される様々なインジケータの使用に関連します。 これは最もよくカバーされたフィールドであるため、詳細は考慮しません。 バーは人工的なエンティティを表します。したがって、プロトデータに近い何か、すなわち価格ティックで動作します。


ローソク足分析技術の研究(第2部): 新規パターンの自動検索
前回の記事では、さまざまな既存のローソク足の形成から選択された14のパターンを分析しました。すべてのパターンを1つずつ分析することは不可能であるため、別の解決策を見つけました。新しいシステムは、既知のローソク足タイプに基づいて新しいローソク足パターンを検索してテストします。