Artículos sobre automatización de sistemas comerciales en el lenguaje MQL5

icon

Lea los artículos sobre los sistemas de trading basados en las ideas muy variadas. Usted sabrá cómo usar los métodos estadísticos y los patrones en los gráficos de velas japonesas, cómo filtrar las señales y para qué sirven los indicadores semafóricos.

A través del Asistente MQL5 Usted aprenderá a crear los robots sin acudir a la programación para evaluar rápidamente las ideas comerciales, así como sabrá qué es lo que representan los algoritmos genéticos.

Nuevo artículo
últimas | mejores
preview
Desarrollamos un asesor experto multidivisa (Parte 17): preparación adicional para el trading real

Desarrollamos un asesor experto multidivisa (Parte 17): preparación adicional para el trading real

Ahora nuestro EA utiliza una base de datos para recuperar las cadenas de inicialización de instancias individuales de estrategias comerciales. Sin embargo, la base de datos es bastante voluminosa y contiene mucha información innecesaria para el funcionamiento real del asesor experto. Vamos a intentar que el EA funcione sin conexión obligatoria a la base de datos.
preview
Operar con noticias de manera sencilla (Parte 6): Ejecución de operaciones (III)

Operar con noticias de manera sencilla (Parte 6): Ejecución de operaciones (III)

En este artículo se implementará la filtración de noticias para eventos de noticias individuales basándose en sus identificadores. Además, se mejorarán las consultas SQL anteriores para proporcionar información adicional o reducir el tiempo de ejecución de la consulta. Además, se hará funcional el código creado en los artículos anteriores.
preview
Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Vamos a crear algo más interesante. El código que mostré antes quedará completamente obsoleto. No quiero arruinar la sorpresa. Sigue el artículo para entender mejor. Desde el inicio de esta secuencia sobre cómo desarrollar un sistema de repetición/simulación, he dicho que la idea es usar la plataforma MetaTrader 5 de manera idéntica, tanto en el sistema que estamos desarrollando como en el mercado real. Es importante que esto se haga de manera adecuada. No querrás entrenar y aprender a luchar usando determinadas herramientas y en el momento de la pelea tener que usar otras.
preview
Redes neuronales: así de sencillo (Parte 63): Entrenamiento previo del Transformador de decisiones no supervisado (PDT)

Redes neuronales: así de sencillo (Parte 63): Entrenamiento previo del Transformador de decisiones no supervisado (PDT)

Continuamos nuestra análisis de la familia de métodos del Transformador de decisiones. En artículos anteriores ya hemos observado que entrenar el transformador subyacente en la arquitectura de estos métodos supone todo un reto y requiere una gran cantidad de datos de entrenamiento marcados. En este artículo, analizaremos un algoritmo para utilizar trayectorias no marcadas para el entrenamiento previo de modelos.
preview
Reimaginando las estrategias clásicas (Parte II): Ruptura de las Bandas de Bollinger

Reimaginando las estrategias clásicas (Parte II): Ruptura de las Bandas de Bollinger

Este artículo explora una estrategia comercial que integra el análisis discriminante lineal (Linear Discriminant Analysis, LDA) con las Bandas de Bollinger, aprovechando las predicciones de zonas categóricas para obtener señales estratégicas de entrada al mercado.
preview
Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

Redes neuronales: así de sencillo (Parte 70): Mejoramos las políticas usando operadores de forma cerrada (CFPI)

En este trabajo, proponemos introducir un algoritmo que use operadores de mejora de políticas de forma cerrada para optimizar las acciones offline del Agente.
preview
Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático

Características del Wizard MQL5 que debe conocer (Parte 30): Normalización por lotes en el aprendizaje automático

La normalización por lotes es el preprocesamiento de datos antes de introducirlos en un algoritmo de aprendizaje automático, como una red neuronal. Esto siempre se hace teniendo en cuenta el tipo de activación que utilizará el algoritmo. Por lo tanto, exploramos los diferentes enfoques que se pueden adoptar para aprovechar los beneficios de esto, con la ayuda de un Asesor Experto ensamblado por un asistente.
preview
Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python

Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python

Hasta ahora, hemos analizado la automatización del inicio de los procedimientos de optimización secuencial de los asesores expertos exclusivamente en el simulador de estrategias estándar. Pero, ¿qué ocurrirá si, entre una ejecución y otra, queremos procesar los datos ya adquiridos con otras herramientas? Hoy intentaremos añadir la posibilidad de crear nuevos pasos de optimización ejecutados por programas escritos en Python.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico

Integración de MQL5 con paquetes de procesamiento de datos (Parte 1): Análisis avanzado de datos y procesamiento estadístico

La integración permite un flujo de trabajo continuo en el que los datos financieros sin procesar de MQL5 se pueden importar a paquetes de procesamiento de datos como Jupyter Lab para realizar análisis avanzados que incluyen pruebas estadísticas.
preview
Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)

Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)

En este artículo, daremos vida a la clase C_Mouse. Está diseñada para permitir programar al más alto nivel posible. Sin embargo, hablar de programar a niveles altos o bajos no está relacionado con incluir palabrotas o jerga en el código. Todo lo contrario. Cuando mencionamos programación de alto o bajo nivel, nos referimos a lo fácil o difícil que es para otro programador entender el código.
preview
Teoría de Categorías en MQL5 (Parte 6): Productos fibrados monomórficos y coproductos fibrados epimórficos

Teoría de Categorías en MQL5 (Parte 6): Productos fibrados monomórficos y coproductos fibrados epimórficos

La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
preview
Kit de herramientas de negociación MQL5 (Parte 3): Desarrollo de una biblioteca EX5 para la gestión de órdenes pendientes

Kit de herramientas de negociación MQL5 (Parte 3): Desarrollo de una biblioteca EX5 para la gestión de órdenes pendientes

Aprenda a desarrollar e implementar una biblioteca EX5 integral de órdenes pendientes en su código o proyectos MQL5. Este artículo le mostrará cómo crear una extensa biblioteca EX5 de gestión de órdenes pendientes y lo guiará en el proceso de importarla e implementarla mediante la creación de un panel de negociación o una interfaz gráfica de usuario (GUI). El panel de órdenes del asesor experto permitirá a los usuarios abrir, monitorear y eliminar órdenes pendientes asociadas con un número mágico específico directamente desde la interfaz gráfica en la ventana del gráfico.
preview
Desarrollamos un asesor experto multidivisa (Parte 10): Creación de objetos a partir de una cadena

Desarrollamos un asesor experto multidivisa (Parte 10): Creación de objetos a partir de una cadena

El plan de desarrollo del EA comprende varias etapas con resultados intermedios almacenados en una base de datos. Solo se pueden recuperar desde allí como cadenas o números, no como objetos. Así que necesitaremos una forma de recrear en el EA los objetos deseados a partir de las cadenas leídas de la base de datos.
preview
Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales

Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales

El agrupamiento basado en densidad para aplicaciones con ruido (DBSCAN) es una forma no supervisada de agrupar datos que apenas requiere parámetros de entrada, salvo solo 2, lo cual, en comparación con otros enfoques como k-means, es una ventaja. Profundizamos en cómo esto podría ser constructivo para probar y eventualmente operar con Asesores Expertos montados por Wizard MQL5.
preview
Redes neuronales en el trading: Resultados prácticos del método TEMPO

Redes neuronales en el trading: Resultados prácticos del método TEMPO

Continuamos familiarizándonos con el método TEMPO. En este artículo, analizaremos la efectividad de los enfoques propuestos con datos históricos reales.
preview
Teoría de Categorías en MQL5 (Parte 17): Funtores y monoides

Teoría de Categorías en MQL5 (Parte 17): Funtores y monoides

Este es el último artículo de la serie sobre funtores. En él, revisaremos los monoides como categoría. Los monoides, que ya hemos introducido en esta serie, se utilizan aquí para ayudar a dimensionar la posición junto con los perceptrones multicapa.
preview
Automatización de estrategias de trading en MQL5 (Parte 3): Sistema RSI de recuperación de zona para la gestión dinámica de operaciones

Automatización de estrategias de trading en MQL5 (Parte 3): Sistema RSI de recuperación de zona para la gestión dinámica de operaciones

En este artículo, creamos un sistema (un EA) de recuperación de zona RSI en MQL5, utilizando señales RSI para lanzar operaciones y una estrategia de recuperación para gestionar las pérdidas. Implementamos una clase «ZoneRecovery» para automatizar las entradas de operaciones, la lógica de recuperación y la gestión de posiciones. El artículo concluye con información sobre backtesting para optimizar el rendimiento y mejorar la eficacia del EA.
preview
Redes neuronales en el trading: Transformador jerárquico de doble torre (Final)

Redes neuronales en el trading: Transformador jerárquico de doble torre (Final)

Seguimos construyendo el modelo del transformador jerárquico Hidformer de dos torres, diseñado para analizar y predecir series temporales multivariantes complejas. En este artículo llevaremos el trabajo iniciado anteriormente a su conclusión lógica probando el modelo con datos históricos reales.
preview
Desarrollamos un asesor experto multidivisa (Parte 16): Efecto de diferentes historias de cotizaciones en los resultados de las pruebas

Desarrollamos un asesor experto multidivisa (Parte 16): Efecto de diferentes historias de cotizaciones en los resultados de las pruebas

El asesor experto que estamos desarrollando debería mostrar buenos resultados al negociar con diferentes brókeres. Pero hasta ahora hemos usado las cotizaciones de la cuenta demo de MetaQuotes para las pruebas. Veamos si nuestro asesor experto está listo para trabajar en una cuenta comercial con cotizaciones diferentes a las utilizadas durante las pruebas y la optimización.
preview
Desarrollo de un sistema de repetición (Parte 45): Proyecto Chart Trade (IV)

Desarrollo de un sistema de repetición (Parte 45): Proyecto Chart Trade (IV)

Lo principal en este artículo es precisamente la presentación y explicación de la clase C_ChartFloatingRAD. Tenemos el indicador Chart Trade, que funciona de una manera bastante interesante. No obstante, si te das cuenta, aún tenemos un número bastante reducido de objetos en el gráfico. Y aun así, tenemos exactamente el comportamiento esperado. Se pueden editar los valores presentes en el indicador. La pregunta es: ¿Cómo es esto posible? En este artículo comenzarás a entenderlo.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte II): Mejorar la capacidad de respuesta y la rapidez de los mensajes

Creación de un Panel de administración de operaciones en MQL5 (Parte II): Mejorar la capacidad de respuesta y la rapidez de los mensajes

En este artículo, vamos a mejorar la capacidad de respuesta del Panel de administración que hemos creado anteriormente. Además, exploraremos la importancia de los mensajes rápidos en el contexto de las señales de negociación.
preview
Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)

Redes neuronales en el trading: Análisis de nubes de puntos (PointNet)

El análisis directo de nubes de puntos evita alcanza un tamaño de datos innecesario y mejora la eficacia de los modelos en tareas de clasificación y segmentación. Estos enfoques demuestran un alto rendimiento y solidez frente a las perturbaciones de los datos de origen.
preview
Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)

Redes neuronales en el trading: Framework comercial híbrido con codificación predictiva (StockFormer)

Hoy le presentamos el StockFormer, un sistema comercial híbrido que combina algoritmos de codificación predictiva y de aprendizaje por refuerzo (RL). El framework utiliza 3 ramas del Transformer con un mecanismo Diversified Multi-Head Attention (DMH-Attn) integrado que mejora el módulo de atención vainilla gracias a un bloque Feed-Forward multicabeza que permite captar diversos patrones de series temporales en diferentes subespacios.
preview
Clústeres de series temporales en inferencia causal

Clústeres de series temporales en inferencia causal

Los algoritmos de agrupamiento en el aprendizaje automático son importantes algoritmos de aprendizaje no supervisado que pueden dividir los datos originales en grupos con observaciones similares. Utilizando estos grupos, puede analizar el mercado de un grupo específico, buscar los grupos más estables utilizando nuevos datos y hacer inferencias causales. El artículo propone un método original de agrupación de series temporales en Python.
preview
Desarrollamos un asesor experto multidivisa (Parte 7): Selección de grupos considerando el periodo forward

Desarrollamos un asesor experto multidivisa (Parte 7): Selección de grupos considerando el periodo forward

Anteriormente hemos evaluado la selección de un grupo de instancias de estrategias comerciales para mejorar el rendimiento cuando trabajan juntas solo durante el mismo periodo de tiempo en el que se han optimizado las instancias individuales. Veamos qué ocurre en el periodo forward.
preview
Redes neuronales: así de sencillo (Parte 68): Optimización de políticas offline basada en preferencias

Redes neuronales: así de sencillo (Parte 68): Optimización de políticas offline basada en preferencias

Desde los primeros artículos sobre el aprendizaje por refuerzo, hemos tocado de un modo u otro dos problemas: la exploración del entorno y la definición de la función de recompensa. Los artículos más recientes se han centrado en el problema de la exploración en el aprendizaje offline. En este artículo, queremos presentar un algoritmo cuyos autores han abandonado por completo la función de recompensa.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 6): Integración todo en uno

Creación de un modelo de restricción de tendencia de velas (Parte 6): Integración todo en uno

Un reto importante es la gestión de varias ventanas de gráficos del mismo par que ejecutan el mismo programa con diferentes funciones. Vamos a discutir cómo consolidar varias integraciones en un programa principal. Además, compartiremos ideas sobre la configuración del programa para imprimir en un diario y comentar el éxito de la emisión de señales en la interfaz de gráficos. Encontrará más información en este artículo a medida que avancemos en la serie de artículos.
preview
Redes neuronales: así de sencillo (Parte 91): Previsión en el dominio de la frecuencia (FreDF)

Redes neuronales: así de sencillo (Parte 91): Previsión en el dominio de la frecuencia (FreDF)

Vamos a continuar con el tema del análisis y la previsión de series temporales en el dominio de la frecuencia. En este artículo, introduciremos un nuevo método de predicción en el dominio de la frecuencia que puede añadirse a muchos de los algoritmos que hemos estudiado anteriormente.
preview
Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones

En este artículo, nos centramos en transformar nuestro panel de control MQL5 estático en una herramienta interactiva habilitando la capacidad de respuesta de los botones. Exploramos cómo automatizar la funcionalidad de los componentes de la interfaz gráfica de usuario (GUI), asegurándonos de que reaccionen adecuadamente a los clics de los usuarios. Al final del artículo, establecemos una interfaz dinámica que mejora la participación del usuario y la experiencia comercial.
preview
Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa

Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa

Seguimos analizando los funtores y cómo se pueden implementar utilizando redes neuronales artificiales. Dejaremos temporalmente el enfoque que implica el pronóstico de la volatilidad e intentaremos implementar nuestra propia clase de señales para establecer señales de entrada y salida para una posición.
preview
Aplicamos el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza en MQL5

Aplicamos el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza en MQL5

En este artículo, discutiremos cómo utilizar el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza para analizar el comportamiento de las series de precios en MQL5.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

En este artículo, integramos botones interactivos en línea en un Asesor Experto MQL5, permitiendo el control en tiempo real a través de Telegram. Cada pulsación de botón desencadena acciones específicas y envía respuestas al usuario. También modularizamos las funciones para manejar los mensajes de Telegram y las consultas de devolución de llamada de forma eficiente.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa

En este artículo, concluimos la primera fase del desarrollo del sistema de repetición y simulador. Con este hito, afirmo, estimado lector, que el sistema ha alcanzado un nivel avanzado, abriendo camino para la incorporación de nuevas funcionalidades. El objetivo es enriquecer aún más el sistema, convirtiéndolo en una herramienta poderosa para estudios y para el desarrollo de análisis de mercado.
preview
Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Las Máquinas de Boltzmann Restringidas (Restricted Boltzmann Machines, RBMs) son un tipo de red neuronal desarrollada a mediados de la década de 1980, en una época en la que los recursos computacionales eran extremadamente costosos.. Desde sus inicios, se basó en el muestreo de Gibbs y la divergencia contrastiva para reducir la dimensionalidad o capturar las probabilidades y propiedades ocultas en los conjuntos de datos de entrenamiento. Analizamos cómo la retropropagación puede lograr un rendimiento similar cuando la RBM "incorpora" precios en un perceptrón multicapa para pronósticos.
preview
Implementación de los cierres parciales en MQL5

Implementación de los cierres parciales en MQL5

En este artículo se desarrolla una clase para gestionar cierres parciales en MQL5 y se integra dentro de un EA de order blocks. Además, se presentan pruebas de backtest comparando la estrategia con y sin parciales, analizando en qué condiciones su uso puede maximizar y asegurar beneficios. Concluimos que especialmente en estilos de trading orientados a movimientos más amplios, el uso de parciales podría ser beneficioso.
preview
Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores

Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores

Los modelos basados en la arquitectura de transformadores demuestran una gran eficacia, pero su uso se complica por el elevado coste de los recursos tanto en la fase de formación como durante el funcionamiento. En este artículo, propongo familiarizarse con los algoritmos que permiten reducir el uso de memoria de tales modelos.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Aunque algunos conceptos pueden parecer sencillos a primera vista, ponerlos en práctica puede resultar bastante complicado. En el siguiente artículo, le guiaremos a través de nuestro innovador enfoque para automatizar un Asesor Experto (Expert Advisor, EA) que analiza hábilmente el mercado utilizando una estrategia de reversión a la media. Acompáñenos mientras desentrañamos las complejidades de este apasionante proceso de automatización.
preview
Introducción a MQL5 (Parte 12): Guía para principiantes sobre cómo crear indicadores personalizados

Introducción a MQL5 (Parte 12): Guía para principiantes sobre cómo crear indicadores personalizados

Aprenda a crear un indicador personalizado en MQL5. Con un enfoque basado en proyectos. Esta guía para principiantes cubre los buffers de indicadores, las propiedades y la visualización de tendencias, permitiéndole aprender paso a paso.
preview
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
preview
Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP

Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP

Concluimos nuestro análisis de la sensibilidad de la tasa de aprendizaje al rendimiento de los Asesores Expertos examinando principalmente las Tasas de Aprendizaje Adaptativo. Estas tasas de aprendizaje pretenden personalizarse para cada parámetro de una capa durante el proceso de entrenamiento, por lo que evaluamos los beneficios potenciales frente al peaje de rendimiento esperado.