Redes neuronales: así de sencillo (Parte 47): Espacio continuo de acciones
En este artículo ampliamos el abanico de tareas de nuestro agente. El proceso de entrenamiento incluirá algunos aspectos de la gestión de capital y del riesgo que forma parte integral de cualquier estrategia comercial.
Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados
El entrenamiento de habilidades útiles sin una función de recompensa explícita es uno de los principales desafíos del aprendizaje por refuerzo jerárquico. Ya nos hemos familiarizado antes con dos algoritmos para resolver este problema, pero el tema de la exploración del entorno sigue abierto. En este artículo, veremos un enfoque distinto en el entrenamiento de habilidades, cuyo uso dependerá directamente del estado actual del sistema.
Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado
En el presente artículo, empezaremos a desarrollar la funcionalidad para trabajar con la Profundidad del mercado. Crearemos la clase del objeto de una orden abstracta de la Profundidad del mercado y sus clases herederas.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)
Intentemos esta vez un enfoque diferente para lograr el objetivo de 1 minuto. Sin embargo, esta tarea no es tan sencilla como muchos piensan.
Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)
En el artículo anterior mostré cómo crear un Chart Trade utilizando los objetos de MetaTrader 5, por medio de la conversión de la plataforma en un sistema RAD. El sistema funciona muy bien, y creo que muchos han pensado en crear una librería para tener cada vez más funcionalidades en el sistema propuesto, y así lograr desarrollar un EA que sea más intuitivo a la vez que tenga una interfaz más agradable y sencilla de utilizar.
Desarrollo de un sistema de repetición (Parte 28): Proyecto Expert Advisor — Clase C_Mouse (I)
Cuando los primeros sistemas capaces de factorizar algo comenzaron a ser producidos, todo requería la intervención de ingenieros con un amplio conocimiento sobre lo que se estaba diseñando. Estamos hablando de los albores de la computación, una época en la que ni siquiera existían terminales que permitieran la programación de algo. A medida que el desarrollo avanzaba y crecía el interés para que más personas pudieran crear algo, surgían nuevas ideas y métodos para programar esas máquinas, que antes dependían de la modificación de la posición de los conectores. Fue entonces cuando aparecieron los primeros terminales.
Algoritmo de recompra: simulación del comercio multidivisa
En este artículo crearemos un modelo matemático para simular la formación de precios multidivisa y completaremos el estudio del principio de diversificación en la búsqueda de mecanismos para aumentar la eficiencia del trading que inicié en el artículo anterior con cálculos teóricos.
Gestión de Riesgo (Parte 5): Integrando la Gestión de Riesgo en un Asesor Experto
En este artículo implemento la gestión de riesgo desarrollada en publicaciones anteriores e incorporo el indicador de order blocks presentado en otros artículos. Además, realizaré un backtest para comparar los resultados con la aplicación de la gestión de riesgo y evaluaré el impacto del riesgo dinámico.
Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos
En artículos recientes, hemos visto varios usos del método Decision Transformer, que permite analizar no solo el estado actual, sino también la trayectoria de los estados anteriores y las acciones realizadas en ellos. En este artículo, veremos una variante del uso de este método en modelos jerárquicos.
Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos
En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.
Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5
En este artículo, desarrollamos un Asesor Experto de trading de ejecución rápida en MQL5, aprovechando los indicadores SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) para crear una estrategia de trading reactiva y eficiente. Detallamos la implementación de la estrategia, incluyendo el uso de los indicadores, la generación de señales y el proceso de prueba y optimización.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 15): Nacimiento del SIMULADOR (V) - RANDOM WALK
En este artículo, vamos a finalizar la fase en la que estamos desarrollando el simulador para nuestro sistema. El propósito principal aquí será ajustar el algoritmo visto en el artículo anterior. Este algoritmo tiene como objetivo crear el movimiento de RANDOM WALK. Por lo tanto, es fundamental comprender el contenido de los artículos anteriores para seguir lo que se explicará aquí. Si no has seguido el desarrollo del simulador, te aconsejo que veas esta secuencia desde el principio. De lo contrario, podrías perderte en lo que se explicará aquí.
Desarrollo de un robot de trading en Python (Parte 3): Implementamos un algoritmo comercial basado en el modelo
Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En esta ocasión, resolveremos el problema relacionado con la creación de un algoritmo comercial en Python.
Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick
A partir de este artículo, procedemos a la creación de la funcionalidad de la biblioteca para trabajar con los datos de precios. Hoy, crearemos una clase del objeto que va a almacenar todos los datos de los precios que llegan con un tick.
Creación de un modelo de restricción de tendencia de velas (Parte 3): Detección de cambios en las tendencias al utilizar este sistema
Este artículo explora cómo las noticias económicas, el comportamiento de los inversores y diversos factores pueden influir en los cambios de tendencia del mercado. Incluye un vídeo explicativo y procede incorporando código MQL5 a nuestro programa para detectar los cambios de tendencia, alertarnos y tomar las medidas oportunas en función de las condiciones del mercado. Este artículo se basa en otros anteriores de la serie.
Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning
En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.
Robot comercial multimodular en Python y MQL5 (Parte I): Creamos la arquitectura básica y los primeros módulos
Hoy desarrollaremos un sistema comercial modular que combina Python para el análisis de datos con MQL5 para la ejecución de transacciones. Sus cuatro módulos independientes supervisan en paralelo distintos aspectos del mercado: volúmenes, arbitraje, economía y riesgo, y utilizan RandomForest con 400 árboles para el análisis. Se hace especial hincapié en la gestión del riesgo, porque sin una gestión eficaz del riesgo, ni siquiera los algoritmos comerciales más avanzados sirven de mucho.
Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning
En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.
Permutación de las barras de precio en MQL5
En este artículo, presentaremos un algoritmo de permutación de barras de precio y detallaremos cómo se pueden utilizar las pruebas de permutación para identificar los casos en los que se ha fabricado el rendimiento de la estrategia para engañar a los posibles compradores del asesor.
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)
En la tercera parte, volveremos a los Asesores Expertos Simple Hedge y Simple Grid que hemos desarrollado anteriormente. En esta ocasión, mejoraremos el Simple Hedge Expert Advisor usando el análisis matemático y el enfoque de fuerza bruta para utilizar de manera óptima la estrategia. Este artículo profundizará en la optimización matemática de estrategias, sentando las bases para futuras investigaciones sobre la optimización basada en códigos de partes posteriores.
Desarrollando un EA comercial desde cero (Parte 13): Times And Trade (II)
Hoy vamos a construir la segunda parte del sistema Times & Trade para analizar el mercado. En el artículo anterior Times & Trade ( I ) presenté un sistema alternativo para organizar un gráfico de manera que tengamos un indicador que nos permita interpretar las operaciones que se han ejecutado en el mercado lo más rápido posible.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 21): FOREX (II)
Vamos a continuar el armado del sistema para cubrir el mercado FOREX. Entonces, para resolver este problema, primero necesitaríamos declarar la carga de los ticks antes de cargar las barras previas. Esto soluciona el problema, pero al mismo tiempo obliga al usuario a seguir un tipo de estructura en el archivo de configuración que, en mi opinión, no tiene mucho sentido. La razón es que, al desarrollar la programación responsable de analizar y ejecutar lo que está en el archivo de configuración, podemos permitir que el usuario declare las cosas en cualquier orden.
Teoría de categorías en MQL5 (Parte 11): Grafos
El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí veremos cómo podemos integrar la teoría de grafos con los monoides y otras estructuras de datos al desarrollar una estrategia de cierre del sistema comercial.
Aprendizaje automático y ciencia de datos (Parte 15): SVM, una herramienta útil en el arsenal de los tráders
En este artículo analizaremos el papel que desempeña el método de máquinas de vectores soporte (Support Vector Machines, SVM) en la configuración del futuro del comercio. El artículo puede considerarse una guía detallada sobre cómo utilizar SVM para mejorar las estrategias comerciales, optimizar la toma de decisiones y abrir nuevas oportunidades en los mercados financieros. Hoy nos sumergiremos en el mundo de la SVM a través de aplicaciones reales, instrucciones paso a paso y revisiones por pares. Quizá esta herramienta indispensable le ayude a entender las complejidades del comercio moderno. En cualquier caso, la SVM se convertirá en una herramienta muy útil en el arsenal de todo tráder.
Visualización de transacciones en un gráfico (Parte 1): Seleccionar un periodo para el análisis
Aquí vamos a desarrollar un script desde cero que simplifica la descarga de pantallas de impresión de transacciones para analizar entradas comerciales. Toda la información necesaria sobre una única operación se puede mostrar cómodamente en un gráfico con la posibilidad de dibujar diferentes marcos temporales.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 11): Nacimiento del SIMULADOR (I)
Para poder usar datos que forman barras, debemos abandonar la repetición y comenzar a desarrollar un simulador. Utilizaremos las barras de 1 minuto precisamente porque nos ofrecen un nivel de complejidad mínimo.
Métodos de William Gann (Parte I): Creación del indicador de ángulos de Gann
¿Cuál es la esencia de la teoría de Gann? ¿Cómo se construyen los ángulos de Gann? Crearemos un indicador de ángulos de Gann para MetaTrader 5.
Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código
Para continuar avanzando, sería bueno ver si podemos mejorar los resultados realizando periódicamente optimizaciones automáticas repetidas y generando un nuevo asesor experto. El escollo en muchos argumentos sobre el uso de la optimización de parámetros es la cuestión de cuánto tiempo pueden usarse los parámetros obtenidos para operar en el periodo futuro manteniendo los principales indicadores de rentabilidad y reducción en los niveles dados. ¿Es posible en general lograrlo?
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada
Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR
En este artículo se finaliza la implementación del breakeven por atr y rr en MQL5, junto con el desarrollo desde cero de una clase que permite cambiar fácilmente el tipo de breakeven sin necesidad de reingresar los parámetros. Se realizan múltiples backtests para evaluar el rendimiento de cada tipo, analizando sus ventajas y desventajas en el contexto del trading algorítmico.
Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM
En este artículo, vamos a crear dos clases: la clase del objeto de instantánea del DOM y la clase del objeto de serie de instantáneas del DOM, además, simularemos la creación de la serie de datos del DOM.
Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python
En este artículo, presentaremos un análisis de sentimiento y los modelos ONNX con Python para ser utilizados en un asesor experto. Un script ejecuta un modelo ONNX entrenado a partir de TensorFlow para predicciones de aprendizaje profundo, mientras que otro obtiene titulares de noticias y cuantifica el sentimiento utilizando IA.
Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5
Los modelos de aprendizaje automático son difíciles de interpretar, y entender por qué los modelos no se ajustan a nuestras expectativas puede ayudarnos mucho a conseguir, en última instancia, el resultado deseado al utilizar técnicas tan avanzadas. Sin un conocimiento exhaustivo del funcionamiento interno del modelo, podría resultar difícil encontrar fallos que degraden el rendimiento. De este modo, podremos dedicar tiempo a crear funciones que no afecten a la calidad de la previsión. La conclusión es que, por muy bueno que sea un modelo, nos perderemos todas sus grandes ventajas por culpa de nuestros propios errores. Afortunadamente, existe una solución sofisticada y bien diseñada que permite ver con claridad lo que sucede bajo el capó del modelo.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores
En este artículo, seguiremos desarrollando las clases de los objetos de indicador y sus colecciones. Crearemos la descripción para cada objeto de indicador y ajustaremos la clase de colección para un almacenamiento y obtención correctos de los objetos de indicador desde la lista de colección.
Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)
Continuamos nuestro análisis de los métodos de aprendizaje por refuerzo. Y en el presente artículo, presentaremos un algoritmo ligeramente distinto que considera la política del Agente en un paradigma de construcción de secuencias de acciones.
Desarrollo y prueba de sistemas comerciales basados en el canal de Keltner
En este artículo examinaremos los sistemas comerciales que utilizan un concepto muy importante de los mercados financieros: la volatilidad. Asimismo, estudiaremos un sistema comercial basado en el Canal de Keltner, incluyendo su implementación en código y sus pruebas con varios activos.
Creación de un EA limitador de reducción diaria en MQL5
El artículo analiza, desde una perspectiva detallada, cómo implementar la creación de un Asesor Experto (EA) basado en el algoritmo comercial. Esto ayuda a automatizar el sistema en MQL5 y tomar el control de la reducción diaria.
Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales
La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.
Desarrollo de un sistema de repetición (Parte 41): Inicio de la segunda fase (II)
Si hasta ahora todo te ha parecido correcto, significa que no estás pensando realmente a largo plazo. Donde empiezas a desarrollar aplicaciones y, con el tiempo, ya no necesitas programar nuevas aplicaciones. Solo tienes que conseguir que trabajen juntos. Veamos cómo terminar de montar el indicador del ratón.
Variables y tipos de datos extendidos en MQL5
Las variables y los tipos de datos son temas muy importantes no solo en la programación MQL5, sino también en cualquier lenguaje de programación. Las variables y los tipos de datos de MQL5 pueden dividirse en simples y extendidos. Aquí veremos las variables y los tipos de datos extendidos. Ya analizamos los sencillos en un artículo anterior.