Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer
Este artículo continúa con el tema de la predicción del próximo movimiento de los precios. Le invito a conocer la arquitectura del Transformador Multifuturo. Su idea principal es descomponer la distribución multimodal del futuro en varias distribuciones unimodales, lo que permite simular eficazmente varios modelos de interacción entre agentes en la escena.
Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)
Seguimos aplicando los planteamientos propuestos por los autores del framework FinCon. FinCon es un sistema multiagente basado en grandes modelos lingüísticos (LLM). Hoy pondremos en marcha los módulos necesarios y efectuaremos pruebas exhaustivas del modelo con datos históricos reales.
Desarrollo de un sistema de repetición (Parte 61): Presionando play en el servicio (II)
En este artículo, analizaremos las modificaciones necesarias para que el sistema de repetición/simulación pueda operar de manera más eficiente y segura. También mostraré algo de interés para quienes deseen aprovechar al máximo el uso de clases. Además, abordaré un problema específico de MQL5 que reduce el rendimiento del código al trabajar con clases y explicaré cómo resolverlo.
Características del Wizard MQL5 que debe conocer (Parte 46): Ichimoku Kinko Hyo (IKH)
El Ichimoku Kinko Hyo (IKH) es un reconocido indicador japonés que sirve como sistema de identificación de tendencias. Examinamos esto, patrón por patrón, como ha sido el caso en artículos similares anteriores, y también evaluamos sus estrategias e informes de pruebas con la ayuda de las clases de la biblioteca del asistente MQL5 y el ensamblaje.
Desarrollo de un sistema de repetición (Parte 55): Módulo de control
En este artículo, implementaremos el indicador de control de manera que pueda integrarse en el sistema de mensajes que está en desarrollo. Aunque no es algo muy complejo de hacer, es necesario entender algunos detalles sobre cómo inicializar este módulo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Redes neuronales: así de sencillo (Parte 97): Entrenamiento de un modelo con el MSFformer
Al estudiar las distintas arquitecturas de construcción de modelos, prestamos poca atención al proceso de entrenamiento de los mismos. En este artículo intentaremos rellenar ese vacío.
Características del Wizard MQL5 que debe conocer (Parte 15): Máquinas de vectores de soporte utilizando el polinomio de Newton
Las máquinas de vectores de soporte clasifican los datos en función de clases predefinidas explorando los efectos de aumentar su dimensionalidad. Se trata de un método de aprendizaje supervisado bastante complejo dado su potencial para tratar datos multidimensionales. Para este artículo consideramos cómo su implementación muy básica de datos bidimensionales puede hacerse más eficientemente con el polinomio de Newton al clasificar precio-acción.
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)
En el artículo anterior, analizamos los fundamentos teóricos y pusimos en práctica los planteamientos del framework Multitask-Stockformer, que combina la transformada de wavelet y el modelo multitarea Self-Attention. Hoy seguiremos aplicando los algoritmos del framework anterior y evaluaremos su eficacia con datos históricos reales.
Desarrollo de un sistema de repetición (Parte 77): Un nuevo Chart Trade (IV)
En este artículo, explicaré algunos detalles y precauciones que debes tener en cuenta al crear un protocolo de comunicación. Son cosas bastante básicas y simples. No voy a profundizar demasiado en este artículo. Pero es necesario que comprendas su contenido para entender lo que sucederá en el receptor.
Automatización de estrategias de trading en MQL5 (Parte 9): Creación de un asesor experto para la estrategia de ruptura asiática
En este artículo, creamos un Asesor Experto en MQL5 para la estrategia de ruptura asiática calculando los máximos y mínimos de la sesión y aplicando un filtro de tendencia con una media móvil. Implementamos estilos dinámicos para objetos, entradas de tiempo definidas por el usuario y una sólida gestión de riesgos. Por último, mostramos técnicas de pruebas retrospectivas y optimización para perfeccionar el sistema.
Redes neuronales: así de sencillo (Parte 93): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo (Parte final)
En este artículo, continuamos la aplicación de los planteamientos del modelo ATFNet, que combina de forma adaptativa los resultados de 2 bloques (frecuencia y tiempo) dentro de la predicción de series temporales.
Operar con el Calendario Económico MQL5 (Parte 4): Implementación de actualizaciones de noticias en tiempo real en el panel de control
Este artículo mejora nuestro panel de control del calendario económico al implementar actualizaciones de noticias en tiempo real para mantener la información del mercado actualizada y útil. Integramos técnicas de obtención de datos en tiempo real en MQL5 para actualizar continuamente los eventos en el panel de control, mejorando así la capacidad de respuesta de la interfaz. Esta actualización garantiza que podamos acceder a las últimas noticias económicas directamente desde el panel de control, optimizando las decisiones comerciales basadas en los datos más recientes.
Desarrollo de un sistema de repetición (Parte 58): Volvemos a trabajar en el servicio
Después de haber tomado un descanso en el desarrollo y perfeccionamiento del servicio usado en la repetición/simulación, retomaremos el trabajo en él. Ahora que no utilizaremos algunos recursos, como las variables globales del terminal, es necesario reestructurar por completo algunas partes de él. No se preocupen, este proceso se explicará adecuadamente para que todos puedan seguir el desarrollo del servicio.
Características del Wizard MQL5 que debe conocer (Parte 20): Regresión simbólica
La regresión simbólica es una forma de regresión que parte de supuestos mínimos o nulos sobre cómo sería el modelo subyacente que traza los conjuntos de datos objeto de estudio. Aunque puede implementarse mediante Métodos Bayesianos o Redes Neuronales, veremos cómo una implementación con Algoritmos Genéticos puede ayudar a personalizar una clase de señal experta utilizable en el asistente MQL5.
Desarrollo de un sistema de repetición (Parte 54): El nacimiento del primer módulo
En este artículo, veremos cómo construir el primero de los módulos, realmente funcional, para ser utilizado en el sistema de repetición/simulador. Además de tener como propósito general servir para otras cosas también. El módulo que se construirá aquí será el del indicador de mouse.
Características del Wizard MQL5 que debe conocer (Parte 32): Regularización
La regularización es una forma de penalizar la función de pérdida en proporción a la ponderación discreta aplicada a lo largo de las distintas capas de una red neuronal. Observamos la importancia que esto puede tener, para algunas de las diversas formas de regularización, en ejecuciones de prueba con un Asesor Experto ensamblado mediante el asistente.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 4): Dimensionamiento dinámico de posiciones
El uso exitoso del trading algorítmico requiere un aprendizaje continuo e interdisciplinario. Sin embargo, la infinita gama de posibilidades puede consumir años de esfuerzo sin producir resultados tangibles. Para abordar esta cuestión, proponemos un marco que introduce gradualmente la complejidad, lo que permite a los operadores perfeccionar sus estrategias de forma iterativa en lugar de dedicar un tiempo indefinido a resultados inciertos.
Redes neuronales en el trading: Agente con memoria multinivel
Los enfoques de memoria multinivel que imitan los procesos cognitivos humanos permiten procesar datos financieros complejos y adaptarse a nuevas señales, lo cual contribuye a mejorar la eficacia de las decisiones de inversión en mercados dinámicos.
Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (GSM++)
Los modelos híbridos de secuencias de grafos (GSM++) combinan los puntos fuertes de distintas arquitecturas para posibilitar un análisis de datos de gran precisión y optimizar los costes computacionales. Estos modelos se adaptan eficazmente a los datos dinámicos del mercado, mejorando la presentación y el procesamiento de la información financiera.
Redes neuronales: así de sencillo (Parte 79): Adición de solicitudes en el contexto de estado (FAQ)
En el artículo anterior, nos familiarizamos con uno de los métodos para detectar objetos en una imagen. Sin embargo, el procesamiento de una imagen estática se diferencia ligeramente del trabajo con series temporales dinámicas que incluyen la dinámica de los precios que hemos analizado. En este artículo les presentaré un método de detección de objetos en vídeo que resulta algo más cercano al problema que estamos resolviendo.
Características del Wizard MQL5 que debe conocer (Parte 36): Q-Learning con Cadenas de Markov
El aprendizaje de refuerzo es uno de los tres principios principales del aprendizaje automático, junto con el aprendizaje supervisado y el aprendizaje no supervisado. Por lo tanto, se preocupa del control óptimo o de aprender la mejor política a largo plazo que se adapte mejor a la función objetivo. Con este telón de fondo, exploramos su posible papel en la información del proceso de aprendizaje de una MLP de un Asesor Experto montado por un asistente.
Redes neuronales en el trading: Modelos bidimensionales del espacio de enlaces (Final)
Continuamos nuestra introducción al innovador framework Chimera, un modelo bidimensional de espacio de estados que utiliza tecnologías de redes neuronales para analizar series temporales multidimensionales. Este método proporciona una gran precisión de predicción con un bajo costo computacional.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 6): Prevención del cierre de posiciones
Únase a nuestro debate de hoy, en el que buscaremos un procedimiento algorítmico para minimizar el número total de veces que nos detienen en operaciones ganadoras. El problema al que nos enfrentamos es muy complejo, y la mayoría de las soluciones que se plantean en los debates comunitarios carecen de normas establecidas y fijas. Nuestro enfoque algorítmico para resolver el problema aumentó la rentabilidad de nuestras operaciones y redujo nuestra pérdida media por operación. Sin embargo, aún quedan avances por realizar para filtrar completamente todas las operaciones que se detendrán. Nuestra solución es un buen primer paso que cualquiera puede probar.
Características del Wizard MQL5 que debe conocer (Parte 52): Accelerator Oscillator (AC)
El Accelerator Oscillator es otro indicador de Bill Williams que sigue la aceleración del impulso del precio y no solo su ritmo. Aunque es muy similar al oscilador Awesome que analizamos en un artículo reciente, busca evitar los efectos de retraso centrándose más en la aceleración que en la velocidad. Como siempre, examinamos qué patrones podemos obtener de esto y también qué importancia podría tener cada uno de ellos en el trading a través de un asesor experto creado por el Asistente MQL5 (MQL5 Wizard).
Características del Wizard MQL5 que debe conocer (Parte 51): Aprendizaje por refuerzo con SAC
Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que utiliza tres redes neuronales. Una red de actores y dos redes de críticos. Estos modelos de aprendizaje automático se emparejan en una relación maestro-esclavo en la que los críticos se modelan para mejorar la precisión de las previsiones de la red de actores. Al tiempo que introducimos ONNX en esta serie, exploramos cómo estas ideas podrían ponerse a prueba como una señal personalizada de un asesor experto ensamblado por un asistente.
Desarrollamos un asesor experto multidivisas (Parte 23): Ordenando la cadena de etapas de optimización automática de proyectos (II)
Hoy nuestro objetivo consiste en crear un sistema de optimización periódica automática de las estrategias comerciales utilizadas en un asesor experto final. El sistema se vuelve más complejo a medida que se desarrolla, por lo que de vez en cuando debemos examinarlo en su conjunto para detectar cuellos de botella y soluciones subóptimas.
El filtro de Kalman para estrategias de reversión a la media en Forex
El filtro de Kalman es un algoritmo recursivo utilizado en el trading algorítmico para estimar el estado real de una serie temporal financiera filtrando el ruido de los movimientos de precios. Actualiza dinámicamente las predicciones basándose en nuevos datos del mercado, lo que lo hace valioso para estrategias adaptativas como la reversión a la media. Este artículo presenta primero el filtro de Kalman, cubriendo su cálculo e implementación. A continuación, aplicamos el filtro a una estrategia clásica de reversión a la media en el mercado de divisas como ejemplo. Por último, realizamos diversos análisis estadísticos comparando el filtro con una media móvil en diferentes pares de divisas.
Arbitraje de swaps en Forex: Reunimos un portafolio sintético y creamos un flujo de swaps estable
¿Quiere saber cómo aprovechar los spreads de los tipos de interés? En este artículo, veremos cómo usar el arbitraje de swaps en Forex para generar unos ingresos constantes cada noche construyendo un portafolio resistente a las fluctuaciones del mercado.
Redes neuronales en el trading: Clusterización doble de series temporales (DUET)
El framework DUET ofrece un enfoque innovador del análisis de series temporales, combinando la clusterización temporal y por canales para revelar patrones ocultos en los datos analizados. Esto permite a los modelos adaptarse a los cambios a lo largo del tiempo y mejorar la calidad de las previsiones eliminando el ruido.
Desarrollo de un sistema de repetición (Parte 76): Un nuevo Chart Trade (III)
En este artículo, veremos cómo funciona el código faltante del artículo anterior, DispatchMessage. Aquí se introducirá el tema del próximo artículo. Por esta razón, es importante entender el funcionamiento de este procedimiento antes de pasar al siguiente tema. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos presentados.
Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrollar y probar la estrategia de negociación con LLMs (IV) - Probar la estrategia de trading
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que debemos pensar en cómo integrar potentes LLM en nuestro trading algorítmico. Para la mayoría de las personas, resulta difícil ajustar estos potentes modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 9): Flujo externo
Este artículo explora una nueva dimensión del análisis utilizando librerías externas diseñadas específicamente para análisis avanzados. Estas librerías, como pandas, proporcionan potentes herramientas para procesar e interpretar datos complejos, lo que permite a los operadores obtener una visión más profunda de la dinámica del mercado. Al integrar estas tecnologías, podemos salvar la brecha entre los datos brutos y las estrategias viables. Únase a nosotros para sentar las bases de este enfoque innovador y liberar el potencial de combinar la tecnología con la experiencia en el comercio.
El análisis volumétrico de redes neuronales como clave de las tendencias futuras
Este artículo explora la posibilidad de mejorar la previsión de los precios usando como base el análisis comercial volumétrico mediante la integración de los principios del análisis técnico con la arquitectura de redes neuronales LSTM. Prestaremos especial atención a la detección e interpretación de volúmenes anómalos, el uso de clusterización y la generación y definición de características basadas en el volumen en el contexto del aprendizaje automático.
Kit de herramientas de negociación MQL5 (Parte 6): Ampliación de la libreria EX5 de gestión del historial con las funciones de última orden pendiente completada
Aprenda a crear un módulo EX5 de funciones exportables que consultan y guardan datos de forma fluida para el pedido pendiente completado más recientemente. En esta guía paso a paso, mejoraremos la librería History Management EX5 desarrollando funciones específicas y compartimentadas para recuperar las propiedades esenciales de la última orden pendiente completada. Estas propiedades incluyen el tipo de orden, el tiempo de configuración, el tiempo de ejecución, el tipo de ejecución y otros detalles críticos necesarios para la gestión y el análisis eficaces del historial de operaciones de las órdenes pendientes.
Redes neuronales en el trading: Segmentación de datos basada en expresiones de referencia
En el proceso de análisis de la situación del mercado, dividimos este en segmentos individuales, identificando las tendencias clave. Sin embargo, los métodos tradicionales de análisis suelen centrarse en un solo aspecto, lo cual limita nuestra percepción. En este artículo, presentaremos un método que nos permitirá seleccionar varios objetos, ofreciéndonos una comprensión más completa y variada de la situación.
Características del Wizard MQL5 que debe conocer (Parte 40): SAR parabólico
El SAR parabólico (Stop-and-Reversal, SAR) es un indicador de confirmación de tendencia y de puntos de finalización de tendencia. Debido a que es un rezagado en la identificación de tendencias, su propósito principal ha sido posicionar trailing stop loss en posiciones abiertas. Sin embargo, exploramos si realmente podría usarse como una señal de Asesor Experto, gracias a clases de señales personalizadas de Asesores Expertos ensamblados por un asistente.
Desarrollo de un sistema de repetición (Parte 53): Esto complica las cosas (V)
En este artículo, presentaré un tema muy importante, que pocos comprenden realmente: Eventos personalizados. Peligros. Ventajas y fallos causados por tales elementos. Este tema es clave para quienes desean convertirse en programadores profesionales en MQL5 o en cualquier otro tipo de lenguaje. Por ello, nos centraremos en MQL5 y MetaTrader 5.
Desarrollo de un sistema de repetición (Parte 69): Ajuste del tiempo (II)
Aquí entenderemos por qué necesitamos utilizar la función iSpread. Al mismo tiempo, comprenderemos cómo el sistema nos informa del tiempo restante de la barra cuando no hay ticks disponibles para hacerlo. El contenido presentado aquí tiene como único propósito la enseñanza y la didáctica. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)
En este artículo analizaremos los algoritmos necesarios para utilizar métodos de atención en la resolución de problemas de detección de objetos en nubes de puntos. La detección de objetos en nubes de puntos es bastante importante para muchas aplicaciones del mundo real.
Redes neuronales en el trading: Estudio de la estructura local de datos
La identificación y preservación eficaz de la estructura local de los datos del mercado en condiciones de ruido es una tarea importante en el trading. El uso del mecanismo de Self-Attention ha ofrecido buenos resultados en el procesamiento de estos datos, pero el método clásico no tiene en cuenta las características locales de la estructura original. En este artículo, le propongo familiarizarse con un algoritmo que considera estas dependencias estructurales.