
Optimización de portafolios en Fórex: Síntesis de VaR y la teoría de Markowitz
¿Cómo funciona la negociación de portafolios en Fórex? ¿Cómo pueden sintetizarse la teoría de portafolios de Markowitz para optimizar las proporciones de los portafolios y el modelo VaR para optimizar el riesgo de los portafolios? Hoy crearemos un código de teoría de portafolios en el que, por un lado, obtendremos un riesgo bajo y, por otro, una rentabilidad aceptable a largo plazo.

Operar con el Calendario Económico MQL5 (Parte 1): Dominar las funciones del Calendario Económico MQL5
En este artículo, exploramos cómo utilizar el Calendario Económico MQL5 para operar, comenzando por comprender sus funciones principales. A continuación, implementamos las funciones clave del Calendario Económico en MQL5 para extraer datos relevantes de noticias que nos ayuden a tomar decisiones de trading. Finalmente, concluimos mostrando cómo utilizar esta información para mejorar las estrategias comerciales de manera efectiva.

Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)
En este artículo, creamos un Asesor Experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout). Cubrimos los conceptos clave de la estrategia, diseñamos el plano del EA e implementamos la lógica de ruptura en MQL5. Al final, exploramos técnicas para realizar pruebas retrospectivas y optimizar el EA con el fin de maximizar su eficacia.

Redes neuronales en el trading: Modelo adaptativo multiagente (Final)
En el artículo anterior, nos familiarizamos con el framework MASA, un framework adaptativo multiagente que combina enfoques de aprendizaje por refuerzo y estrategias adaptativas para ofrecer un equilibrio armonioso entre rentabilidad y riesgo en condiciones de mercado turbulentas. Asimismo, construimos la funcionalidad de los agentes individuales de este framework. En este artículo continuaremos el trabajo empezado, llevándolo a su conclusión lógica.

Redes neuronales en el trading: Modelo adaptativo multiagente (MASA)
Hoy les propongo familiarizarse con el MASA, un framework adaptativo multiagente que combina el aprendizaje por refuerzo y las estrategias adaptativas para ofrecer un equilibrio armonioso entre la rentabilidad y la gestión del riesgo en condiciones de mercado turbulentas.

Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (Final)
En artículos anteriores, revisamos los aspectos teóricos del framework PSformer, que incluye dos importantes innovaciones en la arquitectura del Transformer clásico: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt). En este artículo, continuaremos el trabajo sobre la implementación de los enfoques propuestos mediante MQL5.

Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (PSformer)
Hoy proponemos al lector un primer contacto con el nuevo framework PSformer, que adapta la arquitectura del Transformer vainilla para resolver problemas de previsión de series temporales multidimensionales. El framework se basa en dos innovaciones clave: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt).

Creación de un Panel de administración de operaciones en MQL5 (Parte V): Autenticación de dos factores (2FA)
Hoy discutiremos cómo mejorar la seguridad del Panel de administrador comercial que actualmente se encuentra en desarrollo. Exploraremos cómo implementar MQL5 en una nueva estrategia de seguridad, integrando la API de Telegram para la autenticación de dos factores (2FA). Esta discusión proporcionará información valiosa sobre la aplicación de MQL5 para reforzar las medidas de seguridad. Además, examinaremos la función MathRand, centrándonos en su funcionalidad y cómo se puede utilizar de forma efectiva dentro de nuestro marco de seguridad. ¡Sigue leyendo para descubrir más!

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 2): Añadir capacidad de respuesta a los botones
En este artículo, nos centramos en transformar nuestro panel de control MQL5 estático en una herramienta interactiva habilitando la capacidad de respuesta de los botones. Exploramos cómo automatizar la funcionalidad de los componentes de la interfaz gráfica de usuario (GUI), asegurándonos de que reaccionen adecuadamente a los clics de los usuarios. Al final del artículo, establecemos una interfaz dinámica que mejora la participación del usuario y la experiencia comercial.

Instalación de MetaTrader 5 y otras aplicaciones MetaQuotes en HarmonyOS NEXT
Las aplicaciones de MetaQuotes, incluidas las plataformas MetaTrader 5 y MetaTrader 4, pueden instalarse en dispositivos con sistema operativo HarmonyOS NEXT usando el componente DroiTong. Este artículo ofrece una guía paso a paso para instalar aplicaciones en su teléfono o portátil.

Características del Wizard MQL5 que debe conocer (Parte 43): Aprendizaje por refuerzo con SARSA
SARSA, que es la abreviatura de State-Action-Reward-State-Action (Estado-Acción-Recompensa-Estado-Acción), es otro algoritmo que se puede utilizar al implementar el aprendizaje por refuerzo. Por lo tanto, tal y como vimos con Q-Learning y DQN, analizamos cómo se podría explorar e implementar esto como un modelo independiente, en lugar de solo como un mecanismo de entrenamiento, en los asesores expertos ensamblados por el asistente.

Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (SAMformer)
El entrenamiento de los modelos de Transformer requiere grandes cantidades de datos y suele ser difícil debido a la escasa capacidad de generalización de los modelos en muestras pequeñas. El framework SAMformer ayuda a resolver este problema evitando los mínimos locales malos, mejorando la eficacia de los modelos incluso con muestras de entrenamiento limitadas.

Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS) Modificación
En la segunda parte del artículo, seguiremos desarrollando una versión modificada del algoritmo AOS (Atomic Orbital Search), centrándonos en operadores específicos para mejorar su eficacia y adaptabilidad. Tras analizar los fundamentos y la mecánica del algoritmo, discutiremos ideas para mejorar el rendimiento y la capacidad de analizar espacios de soluciones complejos, proponiendo nuevos enfoques para ampliar su funcionalidad como herramienta de optimización.

Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento
Este artículo profundizará en los métodos para mejorar el tiempo de ejecución del experto en el probador de estrategias. El código se escribirá para dividir los tiempos de los eventos de noticias en categorías por hora. Las horas de estos eventos noticiosos se accederán dentro de la hora especificada. Esto garantiza que el EA pueda gestionar de manera eficiente las operaciones basadas en eventos tanto en entornos de alta como de baja volatilidad.

Redes neuronales en el trading: Optimización del Transformer para la previsión de series temporales (LSEAttention)
El framework LSEAttention ofrece formas de mejorar la arquitectura del Transformer, y se ha diseñado específicamente para la previsión a largo plazo de series temporales multidimensionales. Los enfoques propuestos por los autores del método resuelven los problemas de colapso de entropía e inestabilidad de aprendizaje característicos del Transformer vainilla.

El análisis volumétrico de redes neuronales como clave de las tendencias futuras
Este artículo explora la posibilidad de mejorar la previsión de los precios usando como base el análisis comercial volumétrico mediante la integración de los principios del análisis técnico con la arquitectura de redes neuronales LSTM. Prestaremos especial atención a la detección e interpretación de volúmenes anómalos, el uso de clusterización y la generación y definición de características basadas en el volumen en el contexto del aprendizaje automático.

Integración de Smart Money Concepts (SMC), Order Blocks (OB) y Fibonacci para entradas óptimas
Los bloques de órdenes (Order Blocks, OB) son áreas clave donde los operadores institucionales inician compras o ventas significativas. Después de un movimiento de precio significativo, Fibonacci ayuda a identificar un retroceso potencial desde un máximo reciente hasta un mínimo para identificar la entrada comercial óptima.

Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión
Imagine un actor malicioso infiltrándose en la sala del administrador comercial y obteniendo acceso a las computadoras y al panel de administración que se utilizan para comunicar información valiosa a millones de comerciantes en todo el mundo. Una intrusión de este tipo podría tener consecuencias desastrosas, como el envío no autorizado de mensajes engañosos o clics aleatorios en botones que desencadenan acciones no deseadas. En esta discusión, exploraremos las medidas de seguridad en MQL5 y las nuevas características de seguridad que hemos implementado en nuestro Panel de administración para protegernos contra estas amenazas. Al mejorar nuestros protocolos de seguridad, nuestro objetivo es proteger nuestros canales de comunicación y mantener la confianza de nuestra comunidad comercial global. Encuentre más información en la discusión de este artículo.

Kit de herramientas de negociación MQL5 (Parte 3): Desarrollo de una biblioteca EX5 para la gestión de órdenes pendientes
Aprenda a desarrollar e implementar una biblioteca EX5 integral de órdenes pendientes en su código o proyectos MQL5. Este artículo le mostrará cómo crear una extensa biblioteca EX5 de gestión de órdenes pendientes y lo guiará en el proceso de importarla e implementarla mediante la creación de un panel de negociación o una interfaz gráfica de usuario (GUI). El panel de órdenes del asesor experto permitirá a los usuarios abrir, monitorear y eliminar órdenes pendientes asociadas con un número mágico específico directamente desde la interfaz gráfica en la ventana del gráfico.

Cómo crear un panel interactivo MQL5 utilizando la clase Controls (Parte 1): Configuración del panel
En este artículo, creamos un panel de control interactivo para operaciones bursátiles utilizando la clase Controls en MQL5, diseñada para optimizar las operaciones bursátiles. El panel incluye un título, botones de navegación para Operar, Cerrar e Información, y botones de acción especializados para ejecutar operaciones y gestionar posiciones. Al final del artículo, tendrás un panel base listo para futuras mejoras en futuras entregas.

Añadimos un LLM personalizado a un robot comercial (Parte 5): Desarrolla y prueba una estrategia de trading con LLMs (II), LoRA-Tuning
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos adoptará un enfoque paso a paso para lograr este objetivo.

Simulación de mercado (Parte 04): Creación de la clase C_Orders (I)
En este artículo comenzaremos a construir la clase C_Orders para poder enviar órdenes al servidor de negociación. Lo haremos poco a poco, ya que el objetivo es explicar detalladamente cómo se realizará esto a través del sistema de mensajería.

Características del Wizard MQL5 que debe conocer (Parte 42): Oscilador ADX
El ADX es otro indicador técnico relativamente popular utilizado por algunos traders para medir la fuerza de una tendencia predominante. Actuando como una combinación de otros dos indicadores, se presenta como un oscilador cuyos patrones exploramos en este artículo con la ayuda del asistente de ensamblaje MQL5 y sus clases de soporte.

Simulación de mercado (Parte 02): Orden cruzada (II)
A diferencia de lo que se vio en el artículo anterior, aquí vamos a hacer el control de selección en el Asesor Experto. Aunque esta no es aún una solución definitiva, nos servirá por ahora. Así que acompaña el artículo para entender cómo implementar una de las soluciones posibles.

Simulación de mercado (Parte 01): Orden cruzada (I)
A partir de este artículo, iniciaremos la segunda fase, que tratará la cuestión del sistema de repetición/simulación de mercado. Entonces, comenzaremos mostrando una posible solución para el cruce de órdenes. Esta solución que presentaré no es definitiva, sino una propuesta para el problema que aún será necesario abordar próximamente.

Creación de un Asesor Experto MQL5 basado en la estrategia PIRANHA utilizando las Bandas de Bollinger
En este artículo, creamos un Asesor Experto (Expert Advisor, EA) en MQL5 basado en la estrategia PIRANHA, utilizando Bandas de Bollinger para mejorar la efectividad comercial. Discutimos los principios clave de la estrategia, la implementación de la codificación y los métodos de prueba y optimización. Este conocimiento le permitirá implementar el EA en sus escenarios comerciales de manera efectiva.

Creación de un Panel de administración de operaciones en MQL5 (Parte III): Ampliación de las clases incorporadas para la gestión de temas (II)
En este artículo, ampliaremos cuidadosamente la biblioteca Dialog existente para incorporar la lógica de gestión de temas. Además, integraremos métodos para cambiar de tema en las clases CDialog, CEdit y CButton utilizadas en nuestro proyecto de Panel de administración. Continúe leyendo para obtener perspectivas más reveladoras.

Desarrollo de un sistema de repetición (Parte 78): Un nuevo Chart Trade (V)
En este artículo, veremos cómo deberemos implementar la parte del receptor. Es decir, aquí implementaremos una versión del Asesor Experto, solo para probar y aprender cómo funciona la comunicación vía protocolo. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.

Simulador rápido de estrategias comerciales en Python usando Numba
Este artículo implementaremos un simulador rápido de estrategias para modelos de aprendizaje automático utilizando Numba. En cuanto a su velocidad, superará en un factor de 50 a un simulador de estrategias puramente basado en Python. El autor recomienda usar esta biblioteca para acelerar los cálculos matemáticos, y especialmente cuando se utilizan ciclos.

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (Final)
El uso de procesos de difusión anisotrópica para codificar los datos de origen en un espacio latente hiperbólico, como se propone en el framework HypDIff, ayuda a preservar las características topológicas de la situación actual del mercado y mejora la calidad de su análisis. En el artículo anterior, empezamos a aplicar los enfoques propuestos usando herramientas MQL5. Hoy continuaremos el trabajo iniciado, llevándolo a su conclusión lógica.

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)
El artículo estudiará formas de codificar los datos de origen en un espacio latente hiperbólico mediante procesos de difusión anisotrópica. Esto ayudará a preservar con mayor precisión las características topológicas de la situación actual del mercado y mejorará la calidad de su análisis.

Redes neuronales en el trading: Modelos de difusión direccional (DDM)
Hoy proponemos al lector familiarizarse con los modelos de difusión direccional que explotan el ruido anisotrópico y direccional dependiente de los datos durante la difusión directa para capturar representaciones gráficas significativas.

Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)
Deep-Q-Network es un algoritmo de aprendizaje de refuerzo que involucra redes neuronales para proyectar el próximo valor Q y la acción ideal durante el proceso de entrenamiento de un módulo de aprendizaje automático. Ya hemos considerado un algoritmo de aprendizaje de refuerzo alternativo, Q-Learning. Por lo tanto, este artículo presenta otro ejemplo de cómo un MLP entrenado con aprendizaje de refuerzo se puede utilizar dentro de una clase de señal personalizada.

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 7): Análisis de comandos para la automatización de indicadores en los gráficos
En este artículo, exploramos cómo integrar los comandos en Telegram con MQL5 para automatizar la adición de indicadores en los gráficos de trading. Cubrimos el proceso de análisis sintáctico de los comandos del usuario, ejecutándolos en MQL5, y probando el sistema para asegurar un comercio basado en indicadores sin problemas.

Redes neuronales en el trading: Representación adaptativa de grafos (NAFS)
Hoy le proponemos familiarizarse con el método Node-Adaptive Feature Smoothing (NAFS), que supone un enfoque no paramétrico para crear representaciones de nodos que no requiere entrenamiento de parámetros. El NAFS extrae las características de cada nodo considerando sus vecinos y luego combina adaptativamente dichas características para formar la representación final.

Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)
Hoy, exploraremos las posibilidades de incorporar múltiples estrategias en un Asesor Experto (Expert Advisor, EA) utilizando MQL5. Los asesores expertos ofrecen capacidades más amplias que solo indicadores y scripts, lo que permite enfoques comerciales más sofisticados que pueden adaptarse a las condiciones cambiantes del mercado. Encuentre más información en este artículo de discusión.

Redes neuronales en el trading: Transformador contrastivo de patrones (Final)
En el último artículo de nuestra serie, analizamos el framework Atom-Motif Contrastive Transformer (AMCT), que usa el aprendizaje contrastivo para identificar patrones clave a todos los niveles, desde los elementos básicos hasta las estructuras complejas. En este artículo, continuaremos con la implementación de los enfoques AMCT usando MQL5.

Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python
Hasta ahora, hemos analizado la automatización del inicio de los procedimientos de optimización secuencial de los asesores expertos exclusivamente en el simulador de estrategias estándar. Pero, ¿qué ocurrirá si, entre una ejecución y otra, queremos procesar los datos ya adquiridos con otras herramientas? Hoy intentaremos añadir la posibilidad de crear nuevos pasos de optimización ejecutados por programas escritos en Python.

Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ
Acompáñenos mientras debatimos cómo puede utilizar la IA para optimizar el tamaño de sus posiciones y las cantidades de sus órdenes para maximizar la rentabilidad de su cartera. Mostraremos cómo identificar algorítmicamente una cartera óptima y adaptar su cartera a sus expectativas de rentabilidad o niveles de tolerancia al riesgo. En este debate, utilizaremos la biblioteca SciPy y el lenguaje MQL5 para crear una cartera óptima y diversificada utilizando todos los datos de que disponemos.

Scalping Orderflow en MQL5
Este Asesor Experto de MetaTrader 5 implementa una estrategia Scalping Orderflow con gestión avanzada de riesgos. Utiliza múltiples indicadores técnicos para identificar oportunidades de negociación basadas en los desequilibrios del flujo de órdenes (Orderflow). Las pruebas retrospectivas muestran una rentabilidad potencial, pero resaltan la necesidad de una mayor optimización, especialmente en la gestión de riesgos y en los ratios de resultados comerciales. Adecuado para operadores experimentados, requiere pruebas y comprensión exhaustivas antes de la implementación en vivo.