Integración de Discord con MetaTrader 5: Creación de un robot comercial con notificaciones en tiempo real
En este artículo veremos cómo integrar MetaTrader 5 y el servidor Discord para recibir notificaciones de transacciones en tiempo real desde cualquier parte del mundo. Además, aprenderemos a configurar la plataforma y Discord para asegurarnos de que las alertas se envían a Discord, y hablaremos de los problemas de seguridad que surgen al utilizar WebRequest y webhooks para estos métodos de notificación.
Simulación de mercado (Parte 10): Sockets (IV)
En este artículo, te muestro lo que necesitas hacer para empezar a utilizar Excel y controlar MetaTrader 5, pero de una forma muy interesante. Para ello, utilizaremos un complemento de Excel, de modo que no sea necesario utilizar el VBA integrado. Si no sabes de qué complemento se trata, consulta este artículo y aprende a programar en Python directamente en Excel.
Explorando la criptografía en MQL5: Un enfoque paso a paso
Este artículo analiza la integración de la criptografía en MQL5, mejorando la seguridad y la funcionalidad de los algoritmos de trading. Cubriremos los métodos criptográficos clave y su aplicación práctica en el comercio automatizado.
Integración de las API de los brókers con los Asesores Expertos usando MQL5 y Python
En este artículo, analizaremos la implementación de MQL5 en colaboración con Python para realizar operaciones relacionadas con los brókers. Imagina tener un asesor experto (Expert Advisor, EA) funcionando continuamente alojado en un VPS, ejecutando operaciones en tu nombre. En algún momento, la capacidad de la EA para gestionar fondos se vuelve primordial. Esto incluye operaciones como recargar su cuenta de trading e iniciar retiradas. En este debate, analizaremos las ventajas y la aplicación práctica de estas funciones, garantizando una integración perfecta de la gestión de fondos en su estrategia comercial. ¡Estén atentos!
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 8): Panel de métricas
Como una de las herramientas de análisis de la acción del precio más potentes, el panel de métricas está diseñado para optimizar el análisis del mercado al proporcionar instantáneamente métricas esenciales del mercado con solo hacer clic en un botón. Cada botón tiene una función específica, ya sea analizar tendencias altas/bajas, volumen u otros indicadores clave. Esta herramienta proporciona datos precisos y en tiempo real cuando más los necesita. Profundicemos en sus características en este artículo.
Características del Wizard MQL5 que debe conocer (Parte 51): Aprendizaje por refuerzo con SAC
Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que utiliza tres redes neuronales. Una red de actores y dos redes de críticos. Estos modelos de aprendizaje automático se emparejan en una relación maestro-esclavo en la que los críticos se modelan para mejorar la precisión de las previsiones de la red de actores. Al tiempo que introducimos ONNX en esta serie, exploramos cómo estas ideas podrían ponerse a prueba como una señal personalizada de un asesor experto ensamblado por un asistente.
Algoritmo de búsqueda circular — Circle Search Algorithm (CSA)
Este trabajo presenta un nuevo algoritmo metaheurístico de optimización CSA (Circle Search Algorithm) basado en las propiedades geométricas del círculo. El algoritmo usa el principio de desplazamiento de puntos por tangentes para encontrar la solución óptima combinando fases de exploración global y explotación local.
Algoritmo de optimización del comportamiento social adaptativo (ASBO): — Adaptive Social Behavior Optimization (ASBO): Evolución en dos fases
Este artículo supone una continuación del tema del comportamiento social de los organismos vivos y su impacto en el desarrollo de un nuevo modelo matemático: el ASBO (Adaptive Social Behavior Optimization). Así, nos sumergiremos en la evolución en dos fases, probaremos el algoritmo y sacaremos conclusiones. Al igual que en la naturaleza un grupo de organismos vivos une sus esfuerzos para sobrevivir, el ASBO utiliza los principios de comportamiento colectivo para resolver problemas de optimización complejos.
Kit de herramientas de negociación MQL5 (Parte 6): Ampliación de la libreria EX5 de gestión del historial con las funciones de última orden pendiente completada
Aprenda a crear un módulo EX5 de funciones exportables que consultan y guardan datos de forma fluida para el pedido pendiente completado más recientemente. En esta guía paso a paso, mejoraremos la librería History Management EX5 desarrollando funciones específicas y compartimentadas para recuperar las propiedades esenciales de la última orden pendiente completada. Estas propiedades incluyen el tipo de orden, el tiempo de configuración, el tiempo de ejecución, el tipo de ejecución y otros detalles críticos necesarios para la gestión y el análisis eficaces del historial de operaciones de las órdenes pendientes.
Dominando JSON: Crea tu propio lector JSON desde cero en MQL5
Experimente una guía paso a paso sobre la creación de un analizador JSON personalizado en MQL5, completo con manejo de objetos y matrices, verificación de errores y serialización. Obtenga conocimientos prácticos para conectar su lógica comercial y sus datos estructurados con esta solución flexible para manejar JSON en MetaTrader 5.
Desarrollamos un asesor experto multidivisas (Parte 23): Ordenando la cadena de etapas de optimización automática de proyectos (II)
Hoy nuestro objetivo consiste en crear un sistema de optimización periódica automática de las estrategias comerciales utilizadas en un asesor experto final. El sistema se vuelve más complejo a medida que se desarrolla, por lo que de vez en cuando debemos examinarlo en su conjunto para detectar cuellos de botella y soluciones subóptimas.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 9): Flujo externo
Este artículo explora una nueva dimensión del análisis utilizando librerías externas diseñadas específicamente para análisis avanzados. Estas librerías, como pandas, proporcionan potentes herramientas para procesar e interpretar datos complejos, lo que permite a los operadores obtener una visión más profunda de la dinámica del mercado. Al integrar estas tecnologías, podemos salvar la brecha entre los datos brutos y las estrategias viables. Únase a nosotros para sentar las bases de este enfoque innovador y liberar el potencial de combinar la tecnología con la experiencia en el comercio.
Algoritmo del restaurador de éxito — Successful Restaurateur Algorithm (SRA)
El algoritmo del restaurador de éxito (SRA) es un innovador método de optimización inspirado en los principios de la gestión de restaurantes. A diferencia de los enfoques tradicionales, el SRA no descarta las soluciones débiles, sino que las mejora combinándolas con elementos de las que han tenido éxito. El algoritmo muestra resultados competitivos y ofrece una nueva perspectiva sobre el equilibrio entre investigación y explotación en los problemas de optimización.
Algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO)
En este artículo, nos familiarizaremos con el algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO) y discutiremos cómo un algoritmo basado en el comportamiento irracional y aventurero de los participantes en una sociedad anárquica (un sistema anómalo de interacción social libre de poder centralizado y varios tipos de jerarquías) es capaz de explorar el espacio de soluciones y evitar las trampas del óptimo local. El artículo presenta una estructura ASO unificada aplicable tanto a problemas continuos como discretos.
Uso de reglas de asociación en el análisis de datos de Forex
¿Cómo aplicar las reglas predictivas del análisis minorista de supermercados al mercado Forex real? ¿Cómo se relacionan las compras de galletas, leche y pan con las transacciones bursátiles? El artículo analiza un enfoque innovador del trading algorítmico basado en el uso de reglas de asociación.
Cliente en Connexus (Parte 7): Añadir la capa de cliente
En este artículo continuamos con el desarrollo de la biblioteca Connexus. En este capítulo creamos la clase CHttpClient, responsable de enviar una solicitud y recibir un orden. También cubrimos el concepto de simulaciones, dejando la biblioteca desacoplada de la función WebRequest, lo que permite una mayor flexibilidad para los usuarios.
Optimización por herencia sanguínea — Blood inheritance optimization (BIO)
Les presento mi nuevo algoritmo basado en la población, el BIO (Blood Inheritance Optimization), inspirado en el sistema de herencia del grupo sanguíneo humano. En este algoritmo, cada solución tiene un "grupo sanguíneo" distinto que determina su forma de evolucionar. Al igual que en la naturaleza, el grupo sanguíneo de un niño se hereda según reglas específicas, en el BIO las nuevas soluciones obtienen sus características mediante un sistema de herencia y mutaciones.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 11): EA de señales Heikin Ashi
MQL5 ofrece infinitas oportunidades para desarrollar sistemas de trading automatizados adaptados a sus preferencias. ¿Sabías que incluso puede realizar cálculos matemáticos complejos? En este artículo, presentamos la técnica japonesa Heikin-Ashi como una estrategia de trading automatizada.
Simulación de mercado (Parte 15): Sockets (IX)
En este artículo, explicaré una de las posibles soluciones a lo que he estado intentando mostrar. Es decir, cómo permitir que un usuario de Excel realice una acción en MetaTrader 5 sin enviar órdenes ni abrir o cerrar una posición. La idea es que el usuario utilice Excel para realizar un análisis fundamental de algún símbolo. Y que, usando únicamente Excel, pueda indicar a un Asesor Experto que se esté ejecutando en MetaTrader 5 que debe abrir o cerrar una posición determinada.
Desarrollamos un asesor experto multidivisas (Parte 22): Inicio de la transición a la sustitución dinámica de ajustes
Si hemos empezado a automatizar la optimización periódica, también deberíamos ocuparnos de la actualización automática de los ajustes de los asesores expertos que ya están trabajando en la cuenta comercial. También deberíamos permitirle ejecutar un asesor experto en el simulador de estrategias y cambiar su configuración en una sola pasada.
Analizamos el código binario de los precios en bolsa (Parte II): Convirtiendo a BIP39 y escribiendo un modelo GPT
Seguimos intentando descifrar los movimientos de los precios.... ¿Qué tal un análisis lingüístico del "diccionario de mercado" que obtendríamos convirtiendo el código binario de precios en BIP39? En el presente artículo, nos adentramos en un enfoque innovador del análisis de los datos bursátiles y exploramos cómo pueden aplicarse las modernas técnicas de procesamiento del lenguaje natural al lenguaje del mercado.
Solicitudes en Connexus (Parte 6): Creación de una solicitud y respuesta HTTP
En este sexto artículo de la serie de la biblioteca Connexus, nos centraremos en una solicitud HTTP completa, cubriendo cada componente que la conforma. Crearemos una clase que represente la solicitud en su conjunto, lo que nos ayudará a reunir las clases creadas anteriormente.
Kit de herramientas de negociación MQL5 (Parte 7): Ampliación de la libreria EX5 de gestión del historial con las funciones de última orden pendiente cancelada
Aprenda a completar la creación del módulo final en la librería History Manager EX5, centrándose en las funciones responsables de gestionar la orden pendiente cancelada más recientemente. Esto le proporcionará las herramientas necesarias para recuperar y almacenar de manera eficiente los detalles clave relacionados con las órdenes pendientes canceladas con MQL5.
ADAM poblacional (Estimación Adaptativa de Momentos)
Este artículo presenta la transformación del conocido y popular método de optimización ADAM basado en gradientes en un algoritmo basado en poblaciones y su modificación con la introducción de individuos híbridos. El nuevo enfoque permite crear agentes que combinen elementos de soluciones exitosas mediante una distribución de probabilidades. Una innovación clave es la generación de poblaciones híbridas que acumulan de forma adaptativa la información de las soluciones más prometedoras, mejorando la eficacia de la búsqueda en espacios multidimensionales complejos.
Simulación de mercado (Parte 13): Sockets (VII)
Cuando tú desarrollas algo, ya sea en xlwings o en cualquier otro paquete que nos permita leer y escribir directamente en Excel, en realidad deberías notar que todos los programas, funciones o procedimientos se ejecutan y luego finalizan su tarea. No permanecen allí dentro de un bucle, y, por más que intentes hacer las cosas de otra forma.
Creación de un indicador canal de Keltner con gráficos personalizados en Canvas en MQL5
En este artículo, creamos un indicador del canal de Keltner con gráficos personalizados en MQL5. Detallamos la integración de medias móviles, cálculos ATR y visualización mejorada de gráficos. También cubrimos el backtesting para evaluar el rendimiento del indicador y obtener información práctica sobre el trading.
Características del Wizard MQL5 que debe conocer (Parte 54): Aprendizaje por refuerzo con SAC híbrido y tensores
Soft Actor Critic es un algoritmo de aprendizaje por refuerzo que analizamos en un artículo anterior, donde también presentamos Python y ONNX en esta serie como enfoques eficientes para entrenar redes. Revisamos el algoritmo con el objetivo de aprovechar los tensores, gráficos computacionales que a menudo se utilizan en Python.
Características del Wizard MQL5 que debe conocer (Parte 55): SAC con Prioritized Experience Replay (PER)
Los búferes de reproducción en el aprendizaje por refuerzo son especialmente importantes con algoritmos fuera de política como DQN o SAC. Esto pone entonces el foco en el proceso de muestreo de este búfer de memoria. Mientras que las opciones predeterminadas con SAC, por ejemplo, utilizan una selección aleatoria de este búfer, los búferes de reproducción de experiencia priorizada ajustan esto mediante un muestreo del búfer basado en una puntuación TD. Repasamos la importancia del aprendizaje por refuerzo y, como siempre, examinamos solo esta hipótesis (no la validación cruzada) en un asesor experto creado por un asistente.