Artículos sobre cómo integrar MetaTrader 5 con la ayuda del lenguaje MQL5

icon

Las tareas a las que se enfrenta el operador son interesantes y a menudo requieren unos enfoques originales. Aquí encontrará los artículos en los que se ofrecen las soluciones más inesperadas para la evaluación, análisis y procesamiento de los datos de precio y resultados del trading. En sus artículos los autores describen varias soluciones integrales, incluyendo la conexión de las bases de datos y ICQ, uso de OpenCL y  redes sociales, uso de Delphi y C#.

Léalos y sabrá cómo usar los packs matemáticos y neuronales, así como se enterará de muchas más cosas. Conviértase en el autor y comparta su experiencia única con MQL5.community.

Nuevo artículo
últimas | mejores
preview

Búsqueda de patrones arbitrarios de pares de divisas en Python con ayuda de MetaTrader 5

¿Existen patrones y regularidades recurrentes en el mercado de divisas? He decidido crear mi propio sistema de análisis de patrones usando Python y MetaTrader 5. Una simbiosis de matemáticas y programación para conquistar Fórex.
preview

Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería

Este artículo analiza la creación de una interfaz de mensajería para MetaTrader 5, dirigida a los administradores de sistemas, para facilitar la comunicación con otros traders directamente dentro de la plataforma. Las integraciones recientes de plataformas sociales con MQL5 permiten una rápida transmisión de señales a través de diferentes canales. Imagina poder validar las señales enviadas con un solo clic: "SÍ" o "NO". Sigue leyendo para obtener más información.
Algoritmos de optimización de la población

Algoritmos de optimización de la población

Artículo de introducción a los algoritmos de optimización (AO). Clasificación. En el artículo, intentaremos crear un banco de pruebas (un conjunto de funciones) que servirá en el futuro para comparar los AO entre sí, e incluso, quizás, para identificar el algoritmo más universal de todos los ampliamente conocidos.
preview

Algoritmos de optimización de la población: Algoritmo del mono (Monkey algorithm, MA)

En este artículo analizaremos el algoritmo de optimización "Algoritmo del Mono" (MA). La capacidad de estos ágiles animales para superar obstáculos complicados y alcanzar las copas de los árboles más inaccesibles fue la base de la idea del algoritmo MA.
preview

Análisis del sentimiento en Twitter con sockets

Este innovador bot comercial integra MetaTrader 5 con Python para aprovechar el análisis del sentimiento de las redes sociales en tiempo real para tomar decisiones comerciales automatizadas. Mediante el análisis del sentimiento en Twitter relacionado con instrumentos financieros específicos, el bot traduce las tendencias de las redes sociales en señales de negociación procesables. Utiliza una arquitectura cliente-servidor con comunicación por socket, lo que permite una interacción perfecta entre las capacidades de negociación de MT5 y la potencia de procesamiento de datos de Python. El sistema demuestra el potencial de combinar las finanzas cuantitativas con el procesamiento del lenguaje natural, ofreciendo un enfoque de vanguardia para el comercio algorítmico que aprovecha fuentes de datos alternativas. Si bien muestra potencial, el bot también destaca áreas para mejoras futuras, incluidas técnicas de análisis de sentimientos más avanzadas y estrategias mejoradas de gestión de riesgos.
preview

Teoría de categorías en MQL5 (Parte 1)

La teoría de categorías es un área diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview

Algoritmos de optimización de la población: Algoritmo de optimización de ballenas (Whale Optimization Algorithm, WOA)

El algoritmo de optimización de ballenas (WOA) es un algoritmo metaheurístico inspirado en el comportamiento y las estrategias de caza de las ballenas jorobadas. La idea básica del WOA es imitar el método de alimentación denominado "red de burbujas", en el que las ballenas crean burbujas alrededor de la presa para atacarla después en espiral.
preview

Dominando ONNX: Un punto de inflexión para los tráders de MQL5

Sumérjase en el mundo de ONNX, un potente formato abierto para compartir modelos de aprendizaje automático. Descubra cómo el uso de ONNX puede revolucionar el trading algorítmico en MQL5, permitiendo a los tráders integrar sin problemas modelos avanzados de IA y llevar sus estrategias al siguiente nivel. Descubra los secretos de la compatibilidad multiplataforma y aprenda a liberar todo el potencial de ONNX en sus operaciones MQL5. Mejore sus operaciones con esta guía detallada de ONNX.
preview

Desarrollando un EA comercial desde cero (Parte 15): Acceso a los datos en la web (I)

Cómo acceder a los datos en la web dentro de MetaTrader 5. En la web tenemos varios sitios y lugares en los que una gran y vasta cantidad de información está disponible y accesible para aquellos que saben dónde buscar y cómo utilizar mejor esta información.
preview

Desarrollando un EA comercial desde cero (Parte 17): Acceso a los datos en la web (III)

En este artículo continuaremos a aprender cómo obtener datos de la web para utilizarlos en un EA. Así que pongamos manos a la obra, o más bien a empezar a codificar un sistema alternativo.
preview

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)

Intentemos esta vez un enfoque diferente para lograr el objetivo de 1 minuto. Sin embargo, esta tarea no es tan sencilla como muchos piensan.
preview

Integración de modelos ocultos de Márkov en MetaTrader 5

En este artículo demostramos cómo los modelos ocultos de Márkov entrenados con Python pueden integrarse en las aplicaciones de MetaTrader 5. Los modelos ocultos de Márkov son una potente herramienta estadística utilizada para modelar datos de series temporales, en los que el sistema modelado se caracteriza por estados no observables (ocultos). Una premisa fundamental de los modelos ocultos de Márkov es que la probabilidad de estar en un estado determinado en un momento concreto depende del estado del proceso en el intervalo de tiempo anterior.
preview
Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte II

Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte II

En este artículo, analizaremos el algoritmo genético binario (BGA), que modela los procesos naturales que ocurren en el material genético de los seres vivos en la naturaleza.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 7): Perfeccionamos nuestro modelo de desarrollo de la EA

Creación de un modelo de restricción de tendencia de velas (Parte 7): Perfeccionamos nuestro modelo de desarrollo de la EA

En este artículo, profundizaremos en la preparación detallada de nuestro indicador para el desarrollo del Asesor Experto (EA). Nuestro debate abarcará mejoras adicionales en la versión actual del indicador para mejorar su precisión y funcionalidad. Además, introduciremos nuevas características que marcan puntos de salida, abordando una limitación de la versión anterior, que solo identificaba puntos de entrada.
preview
Validación cruzada simétrica combinatoria en MQL5

Validación cruzada simétrica combinatoria en MQL5

El artículo muestra la implementación de la validación cruzada simétrica combinatoria en MQL5 puro para medir el grado de ajuste tras optimizar la estrategia usando el algoritmo completo lento del simulador de estrategias.
preview
Integración en MQL5: Python

Integración en MQL5: Python

Python es un lenguaje de programación conocido y popular con muchas características, especialmente en los campos de las finanzas, la ciencia de datos, la Inteligencia Artificial y el Aprendizaje Automático. Python es una herramienta poderosa que también puede resultar útil en el trading. MQL5 nos permite utilizar este poderoso lenguaje como una integración para lograr nuestros objetivos de manera efectiva. En este artículo, compartiremos cómo podemos usar Python como una integración en MQL5 después de aprender información básica sobre Python.
preview
Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con integración RestAPI  (Parte 4): Organización de funciones en clases en MQL5

Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con integración RestAPI (Parte 4): Organización de funciones en clases en MQL5

Este artículo examina la transición de la codificación procedimental a la programación orientada a objetos (POO) en MQL5, enfocándose en la integración con REST APIs. Discutimos la organización de funciones de solicitudes HTTP (GET y POST) en clases y destacamos ventajas como el encapsulamiento, la modularidad y la facilidad de mantenimiento. La refactorización de código se detalla, y se muestra la sustitución de funciones aisladas por métodos de clases. El artículo incluye ejemplos prácticos y pruebas.
preview
Cómo usar la API de datos JSON en sus proyectos MQL

Cómo usar la API de datos JSON en sus proyectos MQL

Imagina que puedes utilizar datos que no se encuentran en MetaTrader, solo obtienes datos de los indicadores mediante análisis de precios y análisis técnico. Ahora imagina que puedes acceder a datos que aumentarán tu poder comercial. Puede multiplicar la potencia del software MetaTrader si combina la salida de otro software, métodos de análisis macro y herramientas ultra avanzadas a través de los datos de la API. En este artículo, le enseñaremos cómo utilizar las API y le presentaremos servicios de datos API útiles y valiosos.
preview
Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)

Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)

En este artículo, analizaremos un nuevo algoritmo de optimización de autor, el CTA (Comet Tail Algorithm), que se inspira en objetos espaciales únicos: los cometas y sus impresionantes colas que se forman al acercarse al Sol. Este algoritmo se basa en el concepto del movimiento de los cometas y sus colas, y está diseñado para encontrar soluciones óptimas en problemas de optimización.
preview
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

El presente artículo representa el primer intento de desarrollar un cliente MQTT nativo para MQL5. El MQTT es un protocolo de comunicación "publicación-suscripción". Es ligero, abierto, simple y está diseñado para implementarse con facilidad, lo cual permite su uso en muchas situaciones.
preview
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.
preview
Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.
preview
Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes

Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes

Continuamos analizando los algoritmos de aprendizaje no supervisado. Hoy hablaremos sobre el uso de autocodificadores en el entrenamiento de modelos recurrentes.
preview
Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.
preview
Usamos algoritmos de optimización para ajustar los parámetros del asesor sobre la marcha

Usamos algoritmos de optimización para ajustar los parámetros del asesor sobre la marcha

El artículo analizará diversos aspectos prácticos relacionados con el uso de algoritmos de optimización para encontrar los mejores parámetros de un asesor sobre la marcha, y también virtualizar las operaciones comerciales y la lógica del asesor. El lector puede usar este artículo a modo de instrucciones para implementar algoritmos de optimización en un asesor comercial.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

En la tercera parte, volveremos a los Asesores Expertos Simple Hedge y Simple Grid que hemos desarrollado anteriormente. En esta ocasión, mejoraremos el Simple Hedge Expert Advisor usando el análisis matemático y el enfoque de fuerza bruta para utilizar de manera óptima la estrategia. Este artículo profundizará en la optimización matemática de estrategias, sentando las bases para futuras investigaciones sobre la optimización basada en códigos de partes posteriores.
preview
Modelos de regresión de la biblioteca Scikit-learn y su exportación a ONNX

Modelos de regresión de la biblioteca Scikit-learn y su exportación a ONNX

En este artículo exploraremos la aplicación de modelos de regresión del paquete Scikit-learn e intentaremos convertirlos al formato ONNX y utilizaremos los modelos resultantes dentro de programas MQL5. Adicionalmente, compararemos la precisión de los modelos originales con sus versiones ONNX tanto para precisión flotante como doble. Además, examinaremos la representación ONNX de los modelos de regresión con el fin de comprender mejor su estructura interna y sus principios de funcionamiento.
preview
Desarrollo de un robot de trading en Python (Parte 3): Implementamos un algoritmo comercial basado en el modelo

Desarrollo de un robot de trading en Python (Parte 3): Implementamos un algoritmo comercial basado en el modelo

Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En esta ocasión, resolveremos el problema relacionado con la creación de un algoritmo comercial en Python.
preview
Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
preview
Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)

Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)

El perceptrón multicapa es una evolución del perceptrón simple, capaz de resolver problemas separables no linealmente. Junto con el algoritmo de retropropagación, es posible entrenar eficientemente esta red neuronal. En la tercera parte de la serie sobre el perceptrón multicapa y la retropropagación, mostraremos cómo integrar esta técnica con el simulador de estrategias. Esta integración permitirá utilizar análisis de datos complejos y tomar mejores decisiones para optimizar las estrategias de negociación. En este resumen, analizaremos las ventajas y los retos de la aplicación de esta técnica.
preview
Desarrollamos un asesor experto multidivisa (Parte 8): Realizamos pruebas de carga y procesamos la nueva barra

Desarrollamos un asesor experto multidivisa (Parte 8): Realizamos pruebas de carga y procesamos la nueva barra

Conforme hemos ido avanzado, hemos utilizado cada vez más instancias simultáneas de estrategias comerciales en un mismo asesor experto. Hoy intentaremos averiguar a cuántas instancias podemos llegar antes de encontrarnos con limitaciones de recursos.
preview
Validación cruzada y fundamentos de la inferencia causal en modelos CatBoost, exportación a formato ONNX

Validación cruzada y fundamentos de la inferencia causal en modelos CatBoost, exportación a formato ONNX

En este artículo veremos un método de autor para crear bots utilizando el aprendizaje automático.
preview
Redes neuronales: así de sencillo (Parte 25): Practicando el Transfer Learning

Redes neuronales: así de sencillo (Parte 25): Practicando el Transfer Learning

En los últimos dos artículos, hemos creado una herramienta que nos permite crear y editar modelos de redes neuronales. Ahora es el momento de evaluar el uso potencial de la tecnología de Transfer Learning en ejemplos prácticos.
preview
Elaboración de previsiones económicas: el potencial de Python

Elaboración de previsiones económicas: el potencial de Python

¿Cómo utilizar los datos económicos del Banco Mundial para crear previsiones? ¿Qué ocurre si se combinan modelos de IA y economía?
preview
Algoritmos de optimización de la población: Modificamos la forma y desplazamos las distribuciones de probabilidad y realizamos pruebas con el cefalópodo inteligente (Smart Cephalopod, SC)

Algoritmos de optimización de la población: Modificamos la forma y desplazamos las distribuciones de probabilidad y realizamos pruebas con el cefalópodo inteligente (Smart Cephalopod, SC)

Este artículo investigará qué efectos provoca el cambio de la forma de las distribuciones de probabilidad en el rendimiento de los algoritmos de optimización. Hoy realizaremos experimentos con el algoritmo de prueba "Smart Cephalopod" (SC) para evaluar la eficacia de distintas distribuciones de probabilidad en el contexto de problemas de optimización.
preview
Algoritmos de optimización de la población: Algoritmo de búsqueda de sistema cargado (Charged System Search, CSS)

Algoritmos de optimización de la población: Algoritmo de búsqueda de sistema cargado (Charged System Search, CSS)

En este artículo, analizaremos otro algoritmo de optimización inspirado en la naturaleza inanimada: el algoritmo de búsqueda de sistema cargado (CSS). El objetivo de este artículo es presentar un nuevo algoritmo de optimización basado en los principios de la física y la mecánica.
preview
Desarrollamos un asesor experto multidivisa (Parte 11): Comenzamos a automatizar el proceso de optimización

Desarrollamos un asesor experto multidivisa (Parte 11): Comenzamos a automatizar el proceso de optimización

Para obtener un buen EA, tenemos que seleccionar muchos conjuntos adecuados de parámetros de instancias de estrategias comerciales para él. Esto puede hacerse manualmente ejecutando la optimización en diferentes símbolos y seleccionando después los mejores resultados. Pero resulta mejor delegar el trabajo en un programa y dedicarse a actividades más productivas.
preview
Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller

Algoritmo de optimización del comportamiento social adaptativo — Adaptive Social Behavior Optimization (ASBO): Método de Schwefel, método de Box-Muller

Este artículo presenta una fascinante inmersión en el mundo del comportamiento social de los organismos vivos y su influencia en la creación de un nuevo modelo matemático, el ASBO (Adaptive Social Behavior Optimisation). Hoy exploraremos cómo los principios de liderazgo, vecindad y cooperación observados en las sociedades de seres vivos inspiran el desarrollo de algoritmos de optimización innovadores.
preview
Teoría de Categorías en MQL5 (Parte 10): Grupos monoidales

Teoría de Categorías en MQL5 (Parte 10): Grupos monoidales

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Hoy analizaremos los grupos monoidales como un medio que normaliza conjuntos de monoides y los hace más comparables entre una gama más amplia de conjuntos de monoides y tipos de datos.
preview
Integración de modelos ML con el simulador de estrategias (Conclusión): Implementación de un modelo de regresión para la predicción de precios

Integración de modelos ML con el simulador de estrategias (Conclusión): Implementación de un modelo de regresión para la predicción de precios

Este artículo describe la implementación de un modelo de regresión de árboles de decisión para predecir precios de activos financieros. Se realizaron etapas de preparación de datos, entrenamiento y evaluación del modelo, con ajustes y optimizaciones. Sin embargo, es importante destacar que el modelo es solo un estudio y no debe ser usado en operaciones reales.