
Redes neuronales: así de sencillo (Parte 94): Optimización de la secuencia de entrada
Al trabajar con series temporales, siempre utilizamos los datos de origen en su secuencia histórica. Pero, ¿es ésta la mejor opción? Existe la opinión de que cambiar la secuencia de los datos de entrada mejorará la eficacia de los modelos entrenados. En este artículo te invito a conocer uno de los métodos para optimizar la secuencia de entrada.

Redes neuronales: así de sencillo (Parte 93): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo (Parte final)
En este artículo, continuamos la aplicación de los planteamientos del modelo ATFNet, que combina de forma adaptativa los resultados de 2 bloques (frecuencia y tiempo) dentro de la predicción de series temporales.

Redes neuronales: así de sencillo (Parte 92): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo
Los autores del método FreDF confirmaron experimentalmente la ventaja de la previsión combinada en los ámbitos de la frecuencia y el tiempo. Sin embargo, el uso del hiperparámetro de peso no es óptimo para series temporales no estacionarias. En este artículo, nos familiarizaremos con el método de combinación adaptativa de previsiones en los ámbitos de la frecuencia y el tiempo.

Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos
El gestor de riesgos que hemos desarrollado en los últimos artículos solo contiene funciones básicas. Hoy trataremos de analizar sus posibles formas de desarrollo, lo que nos permitirá aumentar los resultados comerciales sin interferir con la lógica de las estrategias de negociación.

Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5
El artículo guía en la demostración de un algoritmo automatizado basado en cruces de EMA para MetaTrader 5. Información detallada sobre todos los aspectos de la demostración de un Asesor Experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.

Desarrollamos un asesor experto multidivisa (Parte 13): Automatización de la segunda fase: selección en grupos
Ya hemos puesto en marcha la primera fase del proceso de optimización automatizada. Para distintos símbolos y marcos temporales, realizamos la optimización utilizando varios criterios y almacenamos información sobre los resultados de cada pasada en la base de datos. Ahora vamos a seleccionar los mejores grupos de conjuntos de parámetros de entre los encontrados en la primera etapa.

Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 2): Añadir controles y capacidad de respuesta
Mejorar el panel GUI de MQL5 con funciones dinámicas puede mejorar significativamente la experiencia comercial de los usuarios. Al incorporar elementos interactivos, efectos de desplazamiento y actualizaciones de datos en tiempo real, el panel se convierte en una herramienta poderosa para los traders modernos.

Desarrollamos un asesor experto multidivisa (Parte 12): Gestor de riesgos como en las empresas de prop-trading
Ya disponemos de un cierto mecanismo de control de la reducción en el asesor experto que estamos desarrollando. Pero este es de naturaleza probabilística, ya que se basa en resultados de pruebas sobre los datos históricos de los precios. Por lo tanto, las reducciones, aunque con una probabilidad pequeña, pueden superar a veces los valores máximos previstos. Vamos a intentar añadir un mecanismo que garantice el nivel de reducción especificado.

Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA
Concepto de dinero inteligente (ruptura de estructura) junto con el indicador RSI para tomar decisiones comerciales automatizadas informadas basadas en la estructura del mercado.

Redes neuronales: así de sencillo (Parte 91): Previsión en el dominio de la frecuencia (FreDF)
Vamos a continuar con el tema del análisis y la previsión de series temporales en el dominio de la frecuencia. En este artículo, introduciremos un nuevo método de predicción en el dominio de la frecuencia que puede añadirse a muchos de los algoritmos que hemos estudiado anteriormente.

Creación de un EA limitador de reducción diaria en MQL5
El artículo analiza, desde una perspectiva detallada, cómo implementar la creación de un Asesor Experto (EA) basado en el algoritmo comercial. Esto ayuda a automatizar el sistema en MQL5 y tomar el control de la reducción diaria.

Cómo usar la API de datos JSON en sus proyectos MQL
Imagina que puedes utilizar datos que no se encuentran en MetaTrader, solo obtienes datos de los indicadores mediante análisis de precios y análisis técnico. Ahora imagina que puedes acceder a datos que aumentarán tu poder comercial. Puede multiplicar la potencia del software MetaTrader si combina la salida de otro software, métodos de análisis macro y herramientas ultra avanzadas a través de los datos de la API. En este artículo, le enseñaremos cómo utilizar las API y le presentaremos servicios de datos API útiles y valiosos.

Desarrollamos un asesor experto multidivisa (Parte 11): Comenzamos a automatizar el proceso de optimización
Para obtener un buen EA, tenemos que seleccionar muchos conjuntos adecuados de parámetros de instancias de estrategias comerciales para él. Esto puede hacerse manualmente ejecutando la optimización en diferentes símbolos y seleccionando después los mejores resultados. Pero resulta mejor delegar el trabajo en un programa y dedicarse a actividades más productivas.

Características del Wizard MQL5 que debe conocer (Parte 27): Medias móviles y el ángulo de ataque
El ángulo de ataque es una métrica citada a menudo cuya inclinación se entiende que está estrechamente relacionada con la fuerza de una tendencia predominante. Nos fijamos en cómo se utiliza y se entiende comúnmente y examinamos si hay cambios que podrían introducirse en la forma de medirlo en beneficio de un sistema comercial que lo ponga en uso.

Redes neuronales: así de sencillo (Parte 90): Interpolación frecuencial de series temporales (FITS)
Al estudiar el método FEDformer, abrimos la puerta al dominio frecuencial de la representación de series temporales. En este nuevo artículo continuaremos con el tema iniciado, y analizaremos un método que permite no solo el análisis, sino también la predicción de estados posteriores en el ámbito privado.

Características del Wizard MQL5 que debe conocer (Parte 26): Medias móviles y el exponente de Hurst
El exponente de Hurst es una medida del grado de autocorrelación de una serie temporal a largo plazo. Se entiende que capta las propiedades a largo plazo de una serie temporal y, por tanto, tiene cierto peso en el análisis de series temporales, incluso fuera de las series temporales económicas/financieras. Sin embargo, nos centramos en sus posibles beneficios para los operadores, examinando cómo esta métrica podría combinarse con las medias móviles para crear una señal potencialmente sólida.

Redes neuronales: así de sencillo (Parte 89): Transformador de descomposición de la frecuencia de señal (FEDformer)
Todos los modelos de los que hemos hablado anteriormente analizan el estado del entorno como una secuencia temporal. Sin embargo, las propias series temporales también pueden representarse como características de frecuencia. En este artículo, presentaremos un algoritmo que utiliza las características de frecuencia de una secuencia temporal para predecir los estados futuros.

Gestor de riesgos para el trading algorítmico
Los objetivos de este artículo son: demostrar por qué el uso del gestor de riesgos es algo imprescindible, adaptar los principios del riesgo controlado en el trading algorítmico en una clase aparte, de modo que todo el mundo pueda comprobar de forma independiente la eficacia del enfoque de racionamiento del riesgo en el trading intradía y la inversión en los mercados financieros. En este artículo, detallaremos la escritura de una clase de gestor de riesgos para el trading algorítmico como continuación del artículo anterior sobre la escritura de un gestor de riesgos para el trading manual.

Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales
Las estrategias que se basan en múltiples marcos de tiempo no se pueden probar en los Asesores Expertos ensamblados por defecto debido a la arquitectura de código MQL5 utilizada en las clases de ensamblaje. Exploramos una posible solución a esta limitación para las estrategias que buscan utilizar múltiples marcos temporales en un estudio de caso con la media móvil cuadrática.

Desarrollamos un asesor experto multidivisa (Parte 10): Creación de objetos a partir de una cadena
El plan de desarrollo del EA comprende varias etapas con resultados intermedios almacenados en una base de datos. Solo se pueden recuperar desde allí como cadenas o números, no como objetos. Así que necesitaremos una forma de recrear en el EA los objetos deseados a partir de las cadenas leídas de la base de datos.

Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte III)
Esta parte de la serie de artículos está dedicada a la integración de WhatsApp con MetaTrader 5 para las notificaciones. Hemos incluido un diagrama de flujo para simplificar la comprensión y analizaremos la importancia de las medidas de seguridad en la integración. El objetivo principal de los indicadores es simplificar el análisis mediante la automatización, y deben incluir métodos de notificación para alertar a los usuarios cuando se cumplan determinadas condiciones. Descubra más en este artículo.

Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)
El deseo de obtener las previsiones más exactas impulsa a los investigadores a aumentar la complejidad de los modelos de previsión. Lo que a su vez conlleva un aumento de los costes de entrenamiento y mantenimiento del modelo. Pero, ¿está esto siempre justificado? En el presente artículo, me propongo presentarles un algoritmo que explota la sencillez y rapidez de los modelos lineales y muestra resultados a la altura de los mejores con arquitecturas más complejas.

Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)
Las redes neuronales recurrentes (RNNs, Recurrent Neural Networks) destacan por aprovechar la información del pasado para predecir acontecimientos futuros. Sus notables capacidades predictivas se han aplicado en diversos ámbitos con gran éxito. En este artículo, utilizaremos modelos RNN para predecir tendencias en el mercado de divisas, demostrando su potencial para mejorar la precisión de las predicciones en el comercio de divisas.

Características del Wizard MQL5 que debe conocer (Parte 24): Medias móviles
Las medias móviles son un indicador muy común que la mayoría de los operadores utilizan y comprenden. Exploramos posibles casos de uso menos comunes dentro de los Asesores Expertos disponibles en el Asistente de MQL5.

Optimización automatizada de parámetros para estrategias de negociación con Python y MQL5
Existen varios tipos de algoritmos para la autooptimización de estrategias y parámetros de negociación. Estos algoritmos se utilizan para mejorar automáticamente las estrategias de negociación basándose en datos históricos y actuales del mercado. En este artículo veremos uno de ellos con ejemplos en Python y MQL5.

Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales
La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.

Añadimos un LLM personalizado a un robot comercial (Parte 4): Entrena tu propio LLM con GPU
Con el rápido desarrollo de la inteligencia artificial en la actualidad, los modelos lingüísticos (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar potentes LLM en nuestras operaciones algorítmicas. Para la mayoría de la gente, es difícil ajustar estos potentes modelos a sus necesidades, desplegarlos localmente y luego aplicarlos a la negociación algorítmica. Esta serie de artículos abordará paso a paso la consecución de este objetivo.

Desarrollamos un asesor experto multidivisa (Parte 9): Recopilamos los resultados de optimización de las instancias individuales de una estrategia comercial
Hoy vamos a esbozar los principales pasos para desarrollar nuestro EA. Uno de los primeros será realizar una optimización en una sola instancia de la estrategia comercial desarrollada. Así, intentaremos reunir en un solo lugar toda la información necesaria sobre las pasadas del simulador durante la optimización.

Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte II)
Hoy discutiremos sobre la integración funcional de Telegram para las notificaciones de indicadores de MetaTrader 5 utilizando el poder de MQL5, en asociación con Python y la API Telegram Bot. Lo explicaremos todo con detalle para que nadie se pierda ningún punto. Al finalizar este proyecto, habrá adquirido conocimientos valiosos para aplicar en sus proyectos.

Dominar la dinámica del mercado: Crear un asesor experto (EA) de soportes y resistencias
Una guía completa para desarrollar un algoritmo de trading automatizado basado en la estrategia de soportes y resistencias. Información detallada sobre todos los aspectos de la creación de un asesor experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.

Redes neuronales: así de sencillo (Parte 86): Transformador en U
Continuamos nuestro repaso a los algoritmos de previsión de series temporales. En este artículo nos familiarizaremos con los métodos del Transformador en U.

Creación de un modelo de restricción de tendencia de velas (Parte 5): Sistema de notificaciones (Parte I)
Desglosaremos el código principal de MQL5 en fragmentos de código especificados para ilustrar la integración de Telegram y WhatsApp para recibir notificaciones de señales del indicador Trend Constraint que estamos creando en esta serie de artículos. Esto ayudará a los traders, tanto novatos como experimentados, a comprender el concepto con facilidad. En primer lugar, vamos a cubrir la configuración de MetaTrader 5 para las notificaciones y su importancia para el usuario. Esto ayudará a los desarrolladores a tomar notas para aplicarlas en sus sistemas.

Características del Wizard MQL5 que debe conocer (Parte 23): Redes neuronales convolucionales (CNNs, Convolutional Neural Networks)
Las redes neuronales convolucionales son otro algoritmo de aprendizaje automático que tiende a especializarse en descomponer conjuntos de datos multidimensionales en partes constituyentes clave. Examinamos cómo se consigue esto normalmente y exploramos una posible aplicación para los operadores en otra clase de señal del asistente MQL5.

Desarrollando la estrategia martingala Zone Recovery en MQL5
El artículo analiza, en una perspectiva detallada, los pasos que deben implementarse para la creación de un asesor experto basado en el algoritmo comercial Zone Recovery. Esto ayuda a automatizar el sistema ahorrando tiempo a los algotraders.

Kit de herramientas de negociación MQL5 (Parte 1): Desarrollo de una biblioteca EX5 de gestión de posiciones
Aprenda a crear un conjunto de herramientas de desarrollador para gestionar diversas operaciones de posición con MQL5. En este artículo, demostraré cómo crear una librería de funciones (ex5) que realizarán operaciones de gestión de posiciones simples a avanzadas, incluyendo el manejo automático y la notificación de los diferentes errores que surgen al tratar con tareas de gestión de posiciones con MQL5.

Guía paso a paso para operar con la estrategia de ruptura de estructura (BoS, Break of Structure)
Una guía completa para desarrollar un algoritmo de trading automatizado basado en la estrategia de ruptura de estructura (BoS, Break of Structure). Información detallada sobre todos los aspectos de la creación de un asesor en MQL5 y su prueba en MetaTrader 5, desde el análisis de soportes y resistencias de precios, hasta la gestión de riesgos.

Características del Wizard MQL5 que debe conocer (Parte 22): Redes generativas adversativas (RGAs) condicionales
Las redes generativas antagónicas son un emparejamiento de redes neuronales que se entrenan entre sí para obtener resultados más precisos. Adoptamos el tipo condicional de estas redes mientras buscamos una posible aplicación en la previsión de series de tiempo financieras dentro de una clase de señales expertas.

Obtenga una ventaja sobre cualquier mercado (Parte II): Predicción de indicadores técnicos
¿Sabía que podemos obtener más precisión pronosticando ciertos indicadores técnicos que prediciendo el precio subyacente de un símbolo negociado? Únase a nosotros para explorar cómo aprovechar esta información para mejorar las estrategias de negociación.

Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU
Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos abordará paso a paso cómo lograr este objetivo.

Reimaginando las estrategias clásicas: El petróleo
En este artículo, revisamos una estrategia clásica de negociación de crudo con el objetivo de mejorarla aprovechando algoritmos de aprendizaje automático supervisado. Construiremos un modelo de mínimos cuadrados para predecir los futuros precios del crudo Brent basándonos en el diferencial entre los precios del crudo Brent y del crudo WTI. Nuestro objetivo es identificar un indicador adelantado de futuros cambios en los precios del Brent.