Artikel mit Beispielen für das Programmieren von Handelsrobotern in MQL5

icon

Expert Advisors gehören zum Höhepunkt des Programmierens und sind das gewünschte Ziel jeden Entwicklers im Bereich des automatischen Handels. Sie können auch einen eigenen Handelsroboter schreiben, wenn Sie die Artikel dieser Kategorie lesen und beschriebene Schritte durchführen. Sie werden lernen, wie automatische Handelssysteme erstellt und getestet werden.

Die Artikel lehren, nicht nur in MQL5 zu programmieren, sondern auch jegliche Handelsideen und Techniken umzusetzen. Sie erfahren, wie man Trailing-Stops programmiert, Geld verwaltet, Indikatorwerte erhält und vieles mehr.

Neuer Artikel
letzte | beste
preview
Neuronale Netze im Handel: Kontrollierte Segmentierung

Neuronale Netze im Handel: Kontrollierte Segmentierung

In diesem Artikel wird eine Methode zur Analyse komplexer multimodaler Interaktionen und zum Verstehen von Merkmalen erörtert.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 23): Zone Recovery mit Trailing- und Basket-Logik

Automatisieren von Handelsstrategien in MQL5 (Teil 23): Zone Recovery mit Trailing- und Basket-Logik

In diesem Artikel erweitern wir unser Zone Recovery System durch die Einführung von Trailing-Stops und Multi-Basket-Handelsfunktionen. Wir untersuchen, wie die verbesserte Architektur dynamische Trailing-Stops verwendet, um Gewinne zu sichern, und ein Basket-Management-System, um mehrere Handelssignale effizient zu verarbeiten. Durch Implementierung und Backtests demonstrieren wir ein robusteres Handelssystem, das auf eine adaptive Marktperformance zugeschnitten ist.
preview
Entwicklung eines volatilitätsbasierten Ausbruchssystems

Entwicklung eines volatilitätsbasierten Ausbruchssystems

Das auf der Volatilität basierende Breakout-System identifiziert Marktbereiche und handelt dann, wenn der Preis über oder unter diese Niveaus bricht, gefiltert durch Volatilitätsmaße wie ATR. Dieser Ansatz hilft, starke Richtungsbewegungen zu erfassen.
preview
Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)

Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)

Die effiziente Extraktion und Integration von langfristigen Abhängigkeiten und kurzfristigen Merkmalen ist nach wie vor eine wichtige Aufgabe bei der Zeitreihenanalyse. Ihr richtiges Verständnis und ihre Integration sind notwendig, um genaue und zuverlässige Prognosemodelle zu erstellen.
preview
Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)

Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)

Der LSEAttention-Rahmen bietet Verbesserungen der Transformer-Architektur. Es wurde speziell für langfristige multivariate Zeitreihenprognosen entwickelt. Die von den Autoren der Methode vorgeschlagenen Ansätze können angewandt werden, um Probleme des Entropiekollapses und der Lerninstabilität zu lösen, die bei einem einfachen Transformer häufig auftreten.
preview
Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)

Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)

In der vorangegangenen Arbeit haben wir die theoretischen Aspekte des PSformer-Rahmens erörtert, der zwei wichtige Neuerungen in der klassischen Transformer-Architektur beinhaltet: den Parameter-Shared (PS)-Mechanismus und die Berücksichtigung von räumlich-zeitlichen Segmenten (SegAtt). In diesem Artikel setzen wir die Arbeit fort, die wir bei der Implementierung der vorgeschlagenen Ansätze mit MQL5 begonnen haben.
preview
Fortgeschrittene Algorithmen für die Auftragsausführung in MQL5: TWAP, VWAP und Eisberg-Aufträge

Fortgeschrittene Algorithmen für die Auftragsausführung in MQL5: TWAP, VWAP und Eisberg-Aufträge

Ein MQL5-Framework, das den Algorithmus der Ausführung auf institutionellem Niveau (TWAP, VWAP, Iceberg) über einen einheitlichen Ausführungsmanager und einen Performance-Analysator für eine reibungslosere, präzisere Auftragsaufteilung und -analyse für Einzelhändler bereitstellt.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 26): Aufbau eines Pin Bar Averaging Systems für den Handel mit mehreren Positionen

Automatisieren von Handelsstrategien in MQL5 (Teil 26): Aufbau eines Pin Bar Averaging Systems für den Handel mit mehreren Positionen

In diesem Artikel entwickeln wir ein Pin Bar Averaging-System in MQL5, das Pin Bar-Muster erkennt, um Handelsgeschäfte zu initiieren, und eine Averaging-Strategie für das Multipositionsmanagement einsetzt, die durch Trailing-Stops und Breakeven-Anpassungen ergänzt wird. Wir integrieren anpassbare Parameter mit einem Dashboard zur Echtzeitüberwachung von Positionen und Gewinnen.
preview
Neuronale Netze im Handel: Ein Agent mit geschichtetem Speicher

Neuronale Netze im Handel: Ein Agent mit geschichtetem Speicher

Mehrschichtige Speicher, die die kognitiven Prozesse des Menschen nachahmen, ermöglichen die Verarbeitung komplexer Finanzdaten und die Anpassung an neue Signale, wodurch die Wirksamkeit von Anlageentscheidungen auf dynamischen Märkten verbessert wird.
preview
Handel mit dem MQL5 Wirtschaftskalender (Teil 6): Automatisierung des Handelseinstiegs mit der Analyse von Nachrichtenereignissen und Countdown-Timern

Handel mit dem MQL5 Wirtschaftskalender (Teil 6): Automatisierung des Handelseinstiegs mit der Analyse von Nachrichtenereignissen und Countdown-Timern

In diesem Artikel implementieren wir einen automatischen Handelseinstieg mit dem MQL5-Wirtschaftskalender, indem wir nutzerdefinierte Filter und Zeitverschiebungen anwenden, um qualifizierte Nachrichtenereignisse zu identifizieren. Wir vergleichen die prognostizierten und die vorherigen Werte, um zu entscheiden, ob ein KAUF oder VERKAUF eröffnet werden soll. Dynamische Countdown-Timer zeigen die verbleibende Zeit bis zur Veröffentlichung von Nachrichten an und werden nach einem Handel automatisch zurückgesetzt.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 16): Einführung in die Quarters Theory (II) - Intrusion Detector EA

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 16): Einführung in die Quarters Theory (II) - Intrusion Detector EA

In unserem letzten Artikel haben wir ein einfaches Skript namens „Quarters Drawer“ vorgestellt. Auf dieser Grundlage gehen wir nun den nächsten Schritt und erstellen einen Monitor Expert Advisor (EA), der diese Quarter verfolgt und einen Überblick über mögliche Marktreaktionen auf diesen Niveaus bietet. Begleiten Sie uns in diesem Artikel bei der Entwicklung eines Tools zur Zonenerkennung.
preview
Erstellen von dynamischen MQL5-Grafikschnittstellen durch ressourcengesteuerte Bildskalierung mit bikubischer Interpolation auf Handelscharts

Erstellen von dynamischen MQL5-Grafikschnittstellen durch ressourcengesteuerte Bildskalierung mit bikubischer Interpolation auf Handelscharts

In diesem Artikel erforschen wir dynamische MQL5-Grafikschnittstellen, die bikubische Interpolation für hochwertige Bildskalierung auf Handelscharts verwenden. Wir stellen flexible Positionierungsoptionen vor, die eine dynamische Zentrierung oder Eckverankerung mit nutzerdefinierten Versätzen ermöglichen.
preview
Vom Neuling zum Experten: Animierte Nachrichten-Schlagzeile mit MQL5 (IV) – Markteinsichten durch lokal verfügbare KI-Modelle

Vom Neuling zum Experten: Animierte Nachrichten-Schlagzeile mit MQL5 (IV) – Markteinsichten durch lokal verfügbare KI-Modelle

In der heutigen Diskussion untersuchen wir, wie man Open-Source-KI-Modelle selbst hosten und zur Gewinnung von Markteinblicken nutzen kann. Dies ist Teil unserer laufenden Bemühungen, den News Headline EA zu erweitern, indem wir einen AI Info-Streifen einführen, die ihn in ein Multi-Integrations-Assistenz-Tool verwandelt. Der aktualisierte EA zielt darauf ab, Händler durch Kalenderereignisse, aktuelle Finanznachrichten, technische Indikatoren und jetzt auch durch KI-generierte Marktperspektiven auf dem Laufenden zu halten - und bietet so zeitnahe, vielfältige und intelligente Unterstützung für Handelsentscheidungen. Seien Sie dabei, wenn wir praktische Integrationsstrategien erforschen und untersuchen, wie MQL5 mit externen Ressourcen zusammenarbeiten kann, um ein leistungsstarkes und intelligentes Arbeitsterminal für den Handel aufzubauen.
preview
Aufbau von KI-gesteuerten Handelssystemen in MQL5 (Teil 1): Implementierung der JSON-Verarbeitung für KI-APIs

Aufbau von KI-gesteuerten Handelssystemen in MQL5 (Teil 1): Implementierung der JSON-Verarbeitung für KI-APIs

In diesem Artikel entwickeln wir ein System des JSON-Parsing in MQL5, um den Datenaustausch für die KI-API-Integration zu handhaben, wobei wir uns auf eine JSON-Klasse zur Verarbeitung von JSON-Strukturen konzentrieren. Wir implementieren Methoden zur Serialisierung und Deserialisierung von JSON-Daten, die verschiedene Datentypen wie Strings, Zahlen und Objekte unterstützen. Dies ist für die Kommunikation mit KI-Diensten wie ChatGPT unerlässlich und ermöglicht zukünftige KI-gesteuerte Handelssysteme, indem es eine genaue Datenverarbeitung und -manipulation gewährleistet.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil V): Zwei-Faktoren-Authentifizierung (2FA)

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil V): Zwei-Faktoren-Authentifizierung (2FA)

Heute werden wir uns mit der Verbesserung der Sicherheit für das derzeit in der Entwicklung befindliche Trading Administrator Panel befassen. Wir werden untersuchen, wie MQL5 in eine neue Sicherheitsstrategie implementiert werden kann, indem die Telegram-API für die Zwei-Faktor-Authentifizierung (2FA) verwendet wird. Diese Diskussion wird wertvolle Einblicke in die Anwendung von MQL5 bei der Verstärkung von Sicherheitsmaßnahmen liefern. Darüber hinaus werden wir die Funktion MathRand untersuchen, wobei wir uns auf ihre Funktionalität konzentrieren werden und darauf, wie sie innerhalb unseres Sicherheitsrahmens effektiv genutzt werden kann. Lesen Sie weiter, um mehr zu erfahren!
preview
Neuronale Netze im Handel: Der Contrastive Muster-Transformer

Neuronale Netze im Handel: Der Contrastive Muster-Transformer

Der Contrastive Transformer wurde entwickelt, um Märkte sowohl auf der Ebene einzelner Kerzen als auch auf der Basis ganzer Muster zu analysieren. Dies trägt dazu bei, die Qualität der Modellierung von Markttrends zu verbessern. Darüber hinaus fördert der Einsatz des kontrastiven Lernens zum Abgleich der Darstellungen von Kerzen und Mustern die Selbstregulierung und verbessert die Genauigkeit der Prognosen.
preview
Handel mit dem MQL5 Wirtschaftskalender (Teil 8): Optimierung des nachrichtengesteuerten Backtests mit intelligenter Ereignisfilterung und gezielten Protokollen

Handel mit dem MQL5 Wirtschaftskalender (Teil 8): Optimierung des nachrichtengesteuerten Backtests mit intelligenter Ereignisfilterung und gezielten Protokollen

In diesem Artikel optimieren wir unseren Wirtschaftskalender mit intelligenter Ereignisfilterung und gezielter Protokollierung für ein schnelleres, klareres Backtests im Live- und Offline-Modus. Wir rationalisieren die Ereignisverarbeitung und konzentrieren die Protokolle auf kritische Handels- und Dashboard-Ereignisse, um die Strategievisualisierung zu verbessern. Diese Verbesserungen ermöglichen ein nahtloses Testen und Verfeinern von nachrichtengesteuerten Handelsstrategien.
preview
MQL5-Handelswerkzeuge (Teil 7): Informatives Dashboard für Multi-Symbol-Positionen und Kontoüberwachung

MQL5-Handelswerkzeuge (Teil 7): Informatives Dashboard für Multi-Symbol-Positionen und Kontoüberwachung

In diesem Artikel entwickeln wir ein Informations-Dashboard in MQL5 zur Überwachung von Multi-Symbol-Positionen und Kontometriken wie Kontostand, Kapital und freie Marge. Wir implementieren ein sortierbares Raster mit Echtzeit-Updates, CSV-Export und einen leuchtenden Header-Effekt, um die Nutzerfreundlichkeit und den visuellen Reiz zu verbessern.
preview
Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)

Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)

Wir laden Sie ein, die Methode Hierarchical Vector Transformer (HiVT) kennenzulernen, die für die schnelle und genaue Vorhersage von multimodalen Zeitreihen entwickelt wurde.
preview
Websockets für MetaTrader 5: Asynchrone Client-Verbindungen mit dem Windows-API

Websockets für MetaTrader 5: Asynchrone Client-Verbindungen mit dem Windows-API

Dieser Artikel beschreibt die Entwicklung einer nutzerdefinierten, dynamisch gelinkten Bibliothek, die asynchrone Websocket-Client-Verbindungen für MetaTrader-Programme ermöglicht.
preview
Neuronale Netze im Handel: Transformer mit relativer Kodierung

Neuronale Netze im Handel: Transformer mit relativer Kodierung

Selbstüberwachtes Lernen kann ein effektives Mittel sein, um große Mengen ungekennzeichneter Daten zu analysieren. Die Effizienz wird durch die Anpassung der Modelle an die spezifischen Merkmale der Finanzmärkte gewährleistet, was zur Verbesserung der Wirksamkeit der traditionellen Methoden beiträgt. In diesem Artikel wird ein alternativer Aufmerksamkeitsmechanismus vorgestellt, der die relativen Abhängigkeiten und Beziehungen zwischen den Eingaben berücksichtigt.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (I)

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (I)

Diese Diskussion befasst sich mit den Herausforderungen, die bei der Arbeit mit großen Codebasen auftreten. Wir werden die besten Praktiken für die Codeorganisation in MQL5 untersuchen und einen praktischen Ansatz zur Verbesserung der Lesbarkeit und Skalierbarkeit des Quellcodes unseres Trading Administrator Panels implementieren. Darüber hinaus wollen wir wiederverwendbare Code-Komponenten entwickeln, von denen andere Entwickler bei der Entwicklung ihrer Algorithmen profitieren können. Lesen Sie weiter und beteiligen Sie sich an der Diskussion.
preview
Post-Factum-Handelsanalyse: Auswahl von Trailing-Stops und neuen Stoppstufen im Strategietester

Post-Factum-Handelsanalyse: Auswahl von Trailing-Stops und neuen Stoppstufen im Strategietester

Wir setzen das Thema der Analyse von geschlossenen Handelsgeschäften im Strategietester fort, um die Qualität des Handels zu verbessern. Schauen wir uns an, wie die Verwendung verschiedener Trailing-Stops unsere bisherigen Handelsergebnisse verändern kann.
preview
Vom Neuling zum Experten: Animierte Nachrichten-Schlagzeile mit MQL5 (III) – Indicator Insights

Vom Neuling zum Experten: Animierte Nachrichten-Schlagzeile mit MQL5 (III) – Indicator Insights

In diesem Artikel werden wir den News Headline EA weiterentwickeln, indem wir eine spezielle Indikator-Insight-Lane einführen – eine kompakte, auf dem Chart angezeigte Darstellung der wichtigsten technischen Signale, die von beliebten Indikatoren wie RSI, MACD, Stochastic und CCI generiert werden. Dieser Ansatz macht mehrere Unterfenster für Indikatoren auf dem MetaTrader 5-Terminal überflüssig, wodurch Ihr Arbeitsbereich übersichtlich und effizient bleibt. Indem wir die MQL5-API nutzen, um im Hintergrund auf Indikatordaten zuzugreifen, können wir mithilfe einer nutzerdefinierten Logik Markteinblicke in Echtzeit verarbeiten und visualisieren. Erforschen Sie mit uns, wie Sie Indikatordaten in MQL5 manipulieren können, um ein intelligentes und platzsparendes Scrolling Insights System zu erstellen, und das alles auf einer einzigen horizontalen Spur in Ihrem Trading Chart.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 24): London Session Breakout System mit Risikomanagement und Trailing Stops

Automatisieren von Handelsstrategien in MQL5 (Teil 24): London Session Breakout System mit Risikomanagement und Trailing Stops

In diesem Artikel entwickeln wir ein London Session Breakout System, das Ausbrüche vor der Londoner Handelsspanne identifiziert und schwebende Aufträge mit anpassbaren Handelsarten und Risikoeinstellungen platziert. Wir integrieren Funktionen wie Trailing Stops, Risiko-Ertrags-Verhältnisse, maximale Drawdown-Grenzen und ein Kontrollpanel für die Überwachung und Verwaltung in Echtzeit.
preview
Neuronale Netze im Handel: Verwenden von Sprachmodellen für die Zeitreihenprognose

Neuronale Netze im Handel: Verwenden von Sprachmodellen für die Zeitreihenprognose

Wir untersuchen weiterhin Modelle zur Zeitreihenprognose. In diesem Artikel machen wir uns mit einem komplexen Algorithmus vertraut, der auf der Verwendung eines vortrainierten Sprachmodells basiert.
preview
Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)

Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)

Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.
preview
Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken

Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken

Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 35): Erstellung eines Blockausbruch-Handelssystems

Automatisieren von Handelsstrategien in MQL5 (Teil 35): Erstellung eines Blockausbruch-Handelssystems

In diesem Artikel erstellen wir ein Block-Ausbruchssytems in MQL5, das Konsolidierungsbereiche identifiziert, Ausbrüche erkennt und Ausbruchsblöcke mit Umkehrpunkten validiert, um Retests mit definierten Risikoparametern zu handeln. Das System visualisiert Auftrags- und Ausbruchsblöcke mit dynamischen Kennzeichnungen und Pfeilen und unterstützt den automatisierten Handel und Trailing Stops.
preview
Neuronale Netze im Handel: Ein Ensemble von Agenten mit Aufmerksamkeitsmechanismen (MASAAT)

Neuronale Netze im Handel: Ein Ensemble von Agenten mit Aufmerksamkeitsmechanismen (MASAAT)

Wir stellen das Multi-Agent Self-Adaptive Portfolio Optimization Framework (MASAAT) vor, das Aufmerksamkeitsmechanismen und Zeitreihenanalyse kombiniert. MASAAT generiert eine Reihe von Agenten, die Preisreihen und Richtungsänderungen analysieren und so die Identifizierung signifikanter Fluktuationen in Vermögenspreisen auf verschiedenen Detailebenen ermöglichen.
preview
Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (HypDiff)

Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (HypDiff)

Der Artikel befasst sich mit Methoden zur Kodierung von Ausgangsdaten im hyperbolischen latenten Raum durch anisotrope Diffusionsprozesse. Dies trägt dazu bei, die topologischen Merkmale der aktuellen Marktsituation genauer zu erfassen und die Qualität der Analyse zu verbessern.
preview
Neuronale Netze im Handel: Verringerung des Speicherverbrauchs mit der Adam-mini-Optimierung

Neuronale Netze im Handel: Verringerung des Speicherverbrauchs mit der Adam-mini-Optimierung

Eine der Möglichkeiten zur Steigerung der Effizienz des Modelltrainings und des Konvergenzprozesses ist die Verbesserung der Optimierungsmethoden. Adam-mini ist eine adaptive Optimierungsmethode, die den grundlegenden Adam-Algorithmus verbessern soll.
preview
Feature Engineering mit Python und MQL5 (Teil IV): Erkennung von Kerzenmustern mit der UMAP-Regression

Feature Engineering mit Python und MQL5 (Teil IV): Erkennung von Kerzenmustern mit der UMAP-Regression

Techniken zur Dimensionenreduktion werden häufig eingesetzt, um die Leistung von Modellen des maschinellen Lernens zu verbessern. Wir wollen nun eine relativ neue Technik erörtern, die als Uniform Manifold Approximation and Projection (UMAP) bekannt ist. Diese neue Technik wurde entwickelt, um die Einschränkungen herkömmlicher Methoden zu überwinden, die Artefakte und Verzerrungen in den Daten verursachen. UMAP ist eine leistungsstarke Technik zur Dimensionenreduzierung und hilft uns, ähnliche Kerzen auf eine neuartige und effektive Weise zu gruppieren, die unsere Fehlerquoten bei Daten, die nicht in der Stichprobe enthalten sind, reduziert und unsere Handelsleistung verbessert.
preview
Aufbau eines professionellen Handelssystems mit Heikin Ashi (Teil 2): Entwicklung eines EA

Aufbau eines professionellen Handelssystems mit Heikin Ashi (Teil 2): Entwicklung eines EA

Dieser Artikel erklärt, wie man einen professionellen Heikin Ashi-basierten Expert Advisor (EA) in MQL5 entwickelt. Sie werden lernen, wie man Eingabeparameter, Enumerationen, Indikatoren und globale Variablen einrichtet und die zentrale Handelslogik implementiert. Sie können auch einen Backtest mit Gold durchführen, um Ihre Arbeit zu überprüfen.
preview
Visuelle Bewertung und Anpassung des Handels im MetaTrader 5

Visuelle Bewertung und Anpassung des Handels im MetaTrader 5

Mit dem Strategietester können Sie mehr tun, als nur die Parameter Ihres Handelsroboters zu optimieren. Ich zeige Ihnen, wie Sie den Handelsverlauf Ihres Kontos im Nachhinein auswerten und Anpassungen an Ihrem Handel im Tester vornehmen, indem Sie die Stop-Losses Ihrer offenen Positionen ändern.
preview
Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (I)

Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (I)

Die Zugänglichkeit von Nachrichten ist ein entscheidender Faktor beim Handel mit dem MetaTrader 5-Terminal. Obwohl zahlreiche Nachrichten-APIs verfügbar sind, stehen viele Händler vor der Herausforderung, auf diese zuzugreifen und sie effektiv in ihre Handelsumgebung zu integrieren. In dieser Diskussion wollen wir eine schlanke Lösung entwickeln, die Nachrichten direkt auf die Chart bringt – dort, wo sie am meisten gebraucht werden. Zu diesem Zweck wird ein Expert Advisor für News Headline erstellt, der Echtzeit-Nachrichten-Updates aus API-Quellen überwacht und anzeigt.
preview
Einführung in MQL5 (Teil 23): Automatisieren der Opening Range Breakout Strategie

Einführung in MQL5 (Teil 23): Automatisieren der Opening Range Breakout Strategie

Dieser Artikel beschreibt, wie man einen Opening Range Breakout (ORB) Expert Advisor in MQL5 erstellt. Es wird erklärt, wie der EA Ausbrüche aus der anfänglichen Marktspanne identifiziert und dementsprechend Handelsgeschäfte eröffnet. Sie erfahren auch, wie Sie die Anzahl der geöffneten Positionen kontrollieren und eine bestimmte Endzeit festlegen können, um den Handel automatisch zu beenden.
preview
Formulierung eines dynamischen Multi-Pair EA (Teil 2): Portfolio-Diversifizierung und -Optimierung

Formulierung eines dynamischen Multi-Pair EA (Teil 2): Portfolio-Diversifizierung und -Optimierung

Portfolio-Diversifizierung und -Optimierung sorgt für eine strategische Streuung der Anlagen auf mehrere Vermögenswerte, um das Risiko zu minimieren und gleichzeitig die ideale Mischung von Vermögenswerten auszuwählen, um die Renditen auf der Grundlage risikobereinigter Performance-Kennzahlen zu maximieren.
preview
Nachrichtenhandel leicht gemacht (Teil 6): Ausführen des Handels (III)

Nachrichtenhandel leicht gemacht (Teil 6): Ausführen des Handels (III)

In diesem Artikel wird die Nachrichtenfilterung für einzelne Nachrichtenereignisse auf der Grundlage ihrer IDs implementiert. Darüber hinaus werden frühere SQL-Abfragen verbessert, um zusätzliche Informationen zu liefern oder die Laufzeit der Abfrage zu verkürzen. Außerdem wird der in den vorangegangenen Artikeln erstellte Code funktionsfähig gemacht.
preview
Handel mit dem MQL5 Wirtschaftskalender (Teil 10): Bewegliches Dashboard und interaktive Hover-Effekte für eine reibungslose Nachrichten-Navigation

Handel mit dem MQL5 Wirtschaftskalender (Teil 10): Bewegliches Dashboard und interaktive Hover-Effekte für eine reibungslose Nachrichten-Navigation

In diesem Artikel verbessern wir den MQL5-Wirtschaftskalender, indem wir ein bewegliches Dashboard einführen, mit dem wir die Schnittstelle für eine bessere Sichtbarkeit der Charts neu positionieren können. Wir implementieren Hover-Effekte für Schaltflächen, um die Interaktivität zu verbessern und eine nahtlose Navigation mit einer dynamisch positionierten Bildlaufleiste zu gewährleisten.