Artikel mit Beispielen für das Programmieren von Handelsrobotern in MQL5

icon

Expert Advisors gehören zum Höhepunkt des Programmierens und sind das gewünschte Ziel jeden Entwicklers im Bereich des automatischen Handels. Sie können auch einen eigenen Handelsroboter schreiben, wenn Sie die Artikel dieser Kategorie lesen und beschriebene Schritte durchführen. Sie werden lernen, wie automatische Handelssysteme erstellt und getestet werden.

Die Artikel lehren, nicht nur in MQL5 zu programmieren, sondern auch jegliche Handelsideen und Techniken umzusetzen. Sie erfahren, wie man Trailing-Stops programmiert, Geld verwaltet, Indikatorwerte erhält und vieles mehr.

Neuer Artikel
letzte | beste
preview
Stimmungsanalyse auf Twitter mit Sockets

Stimmungsanalyse auf Twitter mit Sockets

Dieser innovative Trading-Bot integriert MetaTrader 5 mit Python, um die Stimmungsanalyse sozialer Medien in Echtzeit für automatisierte Handelsentscheidungen zu nutzen. Durch die Analyse der Twitter-Stimmung in Bezug auf bestimmte Finanzinstrumente übersetzt der Bot Trends in den sozialen Medien in umsetzbare Handelssignale. Es nutzt eine Client-Server-Architektur mit Socket-Kommunikation, die eine nahtlose Interaktion zwischen den Handelsfunktionen von MT5 und der Datenverarbeitungsleistung von Python ermöglicht.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 16): Hauptkomponentenanalyse mit Eigenvektoren

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 16): Hauptkomponentenanalyse mit Eigenvektoren

Die Hauptkomponentenanalyse, ein Verfahren zur Verringerung der Dimensionalität in der Datenanalyse, wird in diesem Artikel untersucht, und es wird gezeigt, wie sie mit Eigenwerten und Vektoren umgesetzt werden kann. Wie immer streben wir die Entwicklung eines Prototyps einer Experten-Signal-Klasse an, die im MQL5-Assistenten verwendet werden kann.
preview
Risikomanager für den algorithmischen Handel

Risikomanager für den algorithmischen Handel

Ziel dieses Artikels ist es, die Notwendigkeit des Einsatzes eines Risikomanagers zu beweisen und die Prinzipien der Risikokontrolle im algorithmischen Handel in einer eigenen Klasse zu implementieren, damit jeder die Wirksamkeit des Ansatzes der Risikostandardisierung im Intraday-Handel und bei Investitionen auf den Finanzmärkten überprüfen kann. In diesem Artikel werden wir eine Risikomanager-Klasse für den algorithmischen Handel erstellen. Dies ist eine logische Fortsetzung des vorangegangenen Artikels, in dem wir die Erstellung eines Risikomanagers für den manuellen Handel besprochen haben.
preview
Neuronale Netze leicht gemacht (Teil 78): Decoderfreier Objektdetektor mit Transformator (DFFT)

Neuronale Netze leicht gemacht (Teil 78): Decoderfreier Objektdetektor mit Transformator (DFFT)

In diesem Artikel schlage ich vor, das Thema der Entwicklung einer Handelsstrategie aus einem anderen Blickwinkel zu betrachten. Wir werden keine zukünftigen Kursbewegungen vorhersagen, sondern versuchen, ein Handelssystem auf der Grundlage der Analyse historischer Daten aufzubauen.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 7): Der EA Signal Pulse

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 7): Der EA Signal Pulse

Nutzen Sie das Potenzial der Multi-Timeframe-Analyse mit „Signal Pulse“, einem MQL5 Expert Advisor, der Bollinger Bänder und den Stochastik Oszillator integriert, um präzise, hochwahrscheinliche Handelssignale zu liefern. Erfahren Sie, wie Sie diese Strategie umsetzen und Kauf- und Verkaufschancen mithilfe von nutzerdefinierten Pfeilen effektiv visualisieren können. Ideal für Händler, die ihr Urteilsvermögen durch automatisierte Analysen über mehrere Zeitrahmen hinweg verbessern möchten.
preview
Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)

Erstellen eines Administrator-Panels für den Handel in MQL5 (Teil III): Verbesserung der grafischen Nutzeroberfläche mit visuellem Styling (I)

In diesem Artikel werden wir uns auf die visuelle Gestaltung der grafischen Nutzeroberfläche (GUI) unseres Trading Administrator Panels mit MQL5 konzentrieren. Wir werden verschiedene in MQL5 verfügbare Techniken und Funktionen erkunden, die eine Anpassung und Optimierung der Schnittstelle ermöglichen, um sicherzustellen, dass sie den Bedürfnissen der Händler entspricht und gleichzeitig eine attraktive Ästhetik beibehält.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 17): Handel mit mehreren Währungen

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 17): Handel mit mehreren Währungen

Der Handel mit mehreren Währungen ist nicht standardmäßig verfügbar, wenn ein Expertenberater über den Assistenten zusammengestellt wird. Wir untersuchen 2 mögliche Hacks, die Händler machen können, wenn sie ihre Ideen mit mehr als einem Symbol gleichzeitig testen wollen.
preview
Klassische Strategien neu interpretieren (Teil III): Prognose von höhere Hochs und tiefere Tiefs

Klassische Strategien neu interpretieren (Teil III): Prognose von höhere Hochs und tiefere Tiefs

In dieser Artikelserie werden wir klassische Handelsstrategien empirisch analysieren, um zu sehen, ob wir sie mithilfe von KI verbessern können. In der heutigen Diskussion haben wir versucht, mithilfe des Modells der linearen Diskriminanzanalyse höhere Hochs und tiefere Tiefs vorherzusagen.
preview
Kategorientheorie in MQL5 (Teil 6): Monomorphe Pullbacks und epimorphe Pushouts

Kategorientheorie in MQL5 (Teil 6): Monomorphe Pullbacks und epimorphe Pushouts

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
preview
Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze

Selbstoptimierende Expert Advisors mit MQL5 und Python erstellen (Teil II): Abstimmung tiefer neuronaler Netze

Modelle für maschinelles Lernen verfügen über verschiedene einstellbare Parameter. In dieser Artikelserie werden wir untersuchen, wie Sie Ihre KI-Modelle mithilfe der SciPy-Bibliothek an Ihren spezifischen Markt anpassen können.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung

Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung

In diesem Artikel bauen wir einen Expert Advisor in MQL5 für einen Raster-Handel, der eine dynamische Los-Skalierung verwendet. Wir behandeln die Strategieentwicklung, die Code-Implementierung und den Backtest-Prozess. Abschließend vermitteln wir wichtige Erkenntnisse und bewährte Verfahren zur Optimierung des automatisierten Handelssystems.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit

In diesem Artikel wird der bestehende Code für das Senden von Nachrichten und Screenshots (screenshot des Terminals) von MQL5 zu Telegram refaktorisiert, indem er in wiederverwendbare, modulare Funktionen aufgeteilt wird. Dadurch wird der Prozess rationalisiert, was eine effizientere Ausführung und eine einfachere Codeverwaltung über mehrere Instanzen hinweg ermöglicht.
preview
Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (VIII) – Schnellhandelsschaltflächen für den Nachrichtenhandel

Vom Neuling zum Experten: Animierte Nachrichtenüberschrift mit MQL5 (VIII) – Schnellhandelsschaltflächen für den Nachrichtenhandel

Während algorithmische Handelssysteme automatisierte Vorgänge verwalten, bevorzugen viele Nachrichtenhändler und Scalper bei aufsehenerregenden Nachrichtenereignissen und schnelllebigen Marktbedingungen eine aktive Steuerung, die eine schnelle Auftragsausführung und -verwaltung erfordert. Dies unterstreicht den Bedarf an intuitiven Front-End-Tools, die Echtzeit-Nachrichtenfeeds, Wirtschaftskalenderdaten, Indikatoreinblicke, KI-gesteuerte Analysen und reaktionsschnelle Handelskontrollen integrieren.
preview
Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates

Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates

Im vorigen Artikel haben wir eine der Methoden zur Erkennung von Objekten in einem Bild kennengelernt. Die Verarbeitung eines statischen Bildes ist jedoch etwas anderes als die Arbeit mit dynamischen Zeitreihen, wie z. B. die Dynamik der von uns analysierten Preise. In diesem Artikel werden wir uns mit der Methode der Objekterkennung in Videos befassen, die dem Problem, das wir lösen wollen, etwas näher kommt.
preview
Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)

Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)

In diesem Artikel werden gerichtete Diffusionsmodelle diskutiert, die datenabhängiges anisotropes und gerichtetes Rauschen in einem Vorwärtsdiffusionsprozess ausnutzen, um aussagekräftige Graphendarstellungen zu erfassen.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 9): External Flow

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 9): External Flow

In diesem Artikel wird eine neue Dimension der Analyse unter Verwendung externer Bibliotheken untersucht, die speziell für fortgeschrittene Analysen entwickelt wurden. Diese Bibliotheken, wie z. B. Pandas, bieten leistungsstarke Werkzeuge für die Verarbeitung und Interpretation komplexer Daten, die es Händlern ermöglichen, tiefere Einblicke in die Marktdynamik zu gewinnen. Durch die Integration solcher Technologien können wir die Lücke zwischen Rohdaten und umsetzbaren Strategien schließen. Begleiten Sie uns, wenn wir den Grundstein für diesen innovativen Ansatz legen und das Potenzial der Kombination von Technologie und Handelskompetenz erschließen.
preview
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram

In diesem Artikel erstellen wir einen in MQL5-Telegram integrierten Expert Advisor, der Moving Average Crossover Signale an Telegram sendet. Wir erläutern den Prozess der Erzeugung von Handelssignalen aus gleitenden Durchschnittsübergängen, die Implementierung des erforderlichen Codes in MQL5 und die Sicherstellung der nahtlosen Integration. Das Ergebnis ist ein System, das Handelswarnungen in Echtzeit direkt an Ihren Telegram-Gruppenchat sendet.
preview
Integration von Broker-APIs mit Expert Advisors unter Verwendung von MQL5 und Python

Integration von Broker-APIs mit Expert Advisors unter Verwendung von MQL5 und Python

In diesem Artikel besprechen wir die Implementierung von MQL5 in Verbindung mit Python, um brokerbezogene Operationen durchzuführen. Stellen Sie sich vor, dass ein kontinuierlich laufender Expert Advisor (EA) auf einem VPS gehostet wird, der in Ihrem Namen handelt. An einem bestimmten Punkt wird die Fähigkeit des EA, Mittel zu verwalten, von entscheidender Bedeutung. Dazu gehören Vorgänge wie die Aufladung Ihres Handelskontos und die Einleitung von Abhebungen. In dieser Diskussion werden wir die Vorteile und die praktische Umsetzung dieser Funktionen beleuchten, um eine nahtlose Integration des Fondsmanagements in Ihre Handelsstrategie zu gewährleisten. Bleiben Sie dran!
preview
Von Python zu MQL5: Eine Reise in quanteninspirierte Handelssysteme

Von Python zu MQL5: Eine Reise in quanteninspirierte Handelssysteme

Der Artikel befasst sich mit der Entwicklung eines quanteninspirierten Handelssystems, das von einem Python-Prototyp zu einer MQL5-Implementierung für den realen Handel übergeht. Das System nutzt die Prinzipien der Quanteninformatik wie Überlagerung und Verschränkung, um Marktzustände zu analysieren, obwohl es auf klassischen Computern mit Quantensimulatoren läuft. Zu den wichtigsten Merkmalen gehören ein Drei-Qubit-System zur gleichzeitigen Analyse von acht Marktzuständen, 24-Stunden-Rückblicke und sieben technische Indikatoren für die Marktanalyse. Auch wenn die Genauigkeitsraten bescheiden erscheinen mögen, bieten sie in Verbindung mit geeigneten Risikomanagementstrategien einen erheblichen Vorteil.
preview
Entwicklung des Swing Entries Monitoring (EA)

Entwicklung des Swing Entries Monitoring (EA)

Wenn sich das Jahr dem Ende zuneigt, denken langfristige Händler oft über die Geschichte des Marktes nach, um sein Verhalten und seine Trends zu analysieren und potenzielle zukünftige Bewegungen zu prognostizieren. In diesem Artikel befassen wir uns mit der Entwicklung eines Expert Advisors (EA) zur langfristigen Überwachung des Einstiegs mit MQL5. Ziel ist es, das Problem verpasster langfristiger Handelsmöglichkeiten zu lösen, das durch manuellen Handel und das Fehlen automatischer Überwachungssysteme verursacht wird. Wir werden eines der am häufigsten gehandelten Paare als Beispiel verwenden, um eine Strategie zu entwickeln und unsere Lösung effektiv zu gestalten.
preview
Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen

Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen

Wir fahren fort mit der Erörterung von Algorithmen für das Training von Trajektorievorhersagemodellen. In diesem Artikel werden wir uns mit einer Methode namens „AutoBots“ vertraut machen.
preview
Neuronale Netze leicht gemacht (Teil 76): Erforschung verschiedener Interaktionsmuster mit Multi-Future Transformer

Neuronale Netze leicht gemacht (Teil 76): Erforschung verschiedener Interaktionsmuster mit Multi-Future Transformer

Dieser Artikel setzt das Thema der Vorhersage der kommenden Kursentwicklung fort. Ich lade Sie ein, sich mit der Architektur eines Multi-Future Transformers vertraut zu machen. Die Hauptidee besteht darin, die multimodale Verteilung der Zukunft in mehrere unimodale Verteilungen zu zerlegen, was es ermöglicht, verschiedene Modelle der Interaktion zwischen Agenten auf der Szene effektiv zu simulieren.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VIII): Das Analytics Panel

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil VIII): Das Analytics Panel

Heute befassen wir uns mit dem Einbinden nützlicher Handelsmetriken in ein spezielles Fenster, das in den Admin Panel EA integriert ist. Diese Diskussion konzentriert sich auf die Implementierung von MQL5 zur Entwicklung des „Analytics Panel“ und hebt den Wert der Daten hervor, die es den Handelsadministratoren liefert. Die Auswirkungen sind weitgehend lehrreich, da aus dem Entwicklungsprozess wertvolle Lehren gezogen werden, von denen sowohl angehende als auch erfahrene Entwickler profitieren. Diese Funktion zeigt die grenzenlosen Möglichkeiten, die diese Entwicklungsreihe für die Ausstattung von Handelsmanagern mit fortschrittlichen Softwaretools bietet. Darüber hinaus werden wir die Implementierung der Klassen PieChart und ChartCanvas als Teil der kontinuierlichen Erweiterung der Funktionen des Trading Administrator-Panels untersuchen.
preview
Kategorientheorie in MQL5 (Teil 12): Ordnungsrelationen

Kategorientheorie in MQL5 (Teil 12): Ordnungsrelationen

Dieser Artikel, der Teil einer Serie ist, die der kategorientheoretischen Implementierung von Graphen in MQL5 folgt, befasst sich mit Ordnungen. Wir untersuchen, wie Konzepte der Ordnungstheorie monoide Mengen bei der Information über Handelsentscheidungen unterstützen können, indem wir zwei wichtige Ordnungstypen betrachten.
preview
Neuronale Netze im Handel: Eine komplexe Methode zur Vorhersage einer Trajektorie (Traj-LLM)

Neuronale Netze im Handel: Eine komplexe Methode zur Vorhersage einer Trajektorie (Traj-LLM)

In diesem Artikel möchte ich Ihnen eine interessante Methode zur Vorhersage von Trajektorien vorstellen, die zur Lösung von Problemen im Bereich der autonomen Fahrzeugbewegungen entwickelt wurde. Die Autoren der Methode haben die besten Elemente verschiedener architektonischer Lösungen kombiniert.
preview
Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung

Nachrichtenhandel leicht gemacht (Teil 4): Leistungsverbesserung

Dieser Artikel befasst sich mit Methoden zur Verbesserung der Laufzeit des Experten im Strategietester. Der Code wird so geschrieben, dass die Zeiten der Nachrichtenereignisse in stündliche Kategorien unterteilt werden. Der Zugriff auf diese Ereigniszeiten erfolgt innerhalb der angegebenen Stunde. Dadurch wird sichergestellt, dass der EA sowohl in Umgebungen mit hoher als auch mit niedriger Volatilität effizient ereignisgesteuerte Trades verwalten kann.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 12): Umsetzung der Strategie der Mitigation Order Blocks (MOB)

Automatisieren von Handelsstrategien in MQL5 (Teil 12): Umsetzung der Strategie der Mitigation Order Blocks (MOB)

In diesem Artikel bauen wir ein MQL5-Handelssystem auf, das die Orderblock-Erkennung für den Handel des Smart Money automatisiert. Wir skizzieren die Regeln der Strategie, implementieren die Logik in MQL5 und integrieren das Risikomanagement für eine effektive Handelsausführung. Schließlich führen wir Backtests durch, um die Leistung des Systems zu bewerten und es für optimale Ergebnisse zu verfeinern.
preview
Handel mit dem MQL5 Wirtschaftskalender (Teil 3): Hinzufügen de Filter für Währung, Bedeutung und Zeit

Handel mit dem MQL5 Wirtschaftskalender (Teil 3): Hinzufügen de Filter für Währung, Bedeutung und Zeit

In diesem Artikel implementieren wir Filter in das MQL5-Wirtschaftskalender-Dashboard, um die Anzeige von Nachrichtenereignissen nach Währung, Bedeutung und Zeit zu verfeinern. Wir erstellen zunächst Filterkriterien für jede Kategorie und integrieren diese dann in das Dashboard, um nur relevante Ereignisse anzuzeigen. Schließlich stellen wir sicher, dass jeder Filter dynamisch aktualisiert wird, um Händlern gezielte wirtschaftliche Erkenntnisse in Echtzeit zu liefern.
preview
Klassische Strategien neu interpretieren (Teil X): Kann KI den MACD verbessern?

Klassische Strategien neu interpretieren (Teil X): Kann KI den MACD verbessern?

Begleiten Sie uns bei der empirischen Analyse des MACD-Indikators, um zu testen, ob die Anwendung von KI auf eine Strategie, die den Indikator mit einbezieht, unsere Prognosegenauigkeit für den EURUSD verbessern würde. Gleichzeitig haben wir geprüft, ob der Indikator selbst leichter vorhersagbar ist als der Preis, und ob der Wert des Indikators das künftige Preisniveau vorhersagt. Wir geben Ihnen die Informationen an die Hand, die Sie benötigen, um zu entscheiden, ob Sie Ihre Zeit in die Integration des MACD in Ihre AI-Handelsstrategien investieren sollten.
preview
Den Marktstimmungsindikator automatisieren

Den Marktstimmungsindikator automatisieren

In diesem Artikel entwickeln wir einen nutzerdefinierten Indikator für die Marktstimmung, um die Bedingungen in aufwärts, abwärts, mehr und weniger Risiko oder neutral zu klassifizieren. Der Expert Advisor liefert Echtzeit-Einblicke in die vorherrschende Stimmung und vereinfacht den Analyseprozess für aktuelle Markttrends oder -richtungen.
preview
Nachrichtenhandel leicht gemacht (Teil 2): Risikomanagement

Nachrichtenhandel leicht gemacht (Teil 2): Risikomanagement

In diesem Artikel wird die Vererbung in unseren bisherigen und neuen Code eingeführt. Um die Effizienz zu erhöhen, wird ein neues Datenbankdesign eingeführt. Darüber hinaus wird eine Risikomanagementklasse eingerichtet, die sich mit der Berechnung des Volumens befasst.
preview
Neuronale Netze leicht gemacht (Teil 95): Reduzierung des Speicherverbrauchs in Transformermodellen

Neuronale Netze leicht gemacht (Teil 95): Reduzierung des Speicherverbrauchs in Transformermodellen

Auf der Transformerarchitektur basierende Modelle weisen eine hohe Effizienz auf, aber ihre Verwendung wird durch hohe Ressourcenkosten sowohl in der Trainingsphase als auch während des Betriebs erschwert. In diesem Artikel schlage ich vor, sich mit Algorithmen vertraut zu machen, die es ermöglichen, den Speicherverbrauch solcher Modelle zu reduzieren.
preview
Beispiel für CNA (Causality Network Analysis), SMOC (Stochastic Model Optimal Control) und Nash Game Theory mit Deep Learning

Beispiel für CNA (Causality Network Analysis), SMOC (Stochastic Model Optimal Control) und Nash Game Theory mit Deep Learning

Wir werden Deep Learning zu den drei Beispielen hinzufügen, die in früheren Artikeln veröffentlicht wurden, und die Ergebnisse mit den vorherigen vergleichen. Das Ziel ist es, zu lernen, wie man DL zu anderen EAs hinzufügt.
preview
Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Das Panel zur Handelsverwaltung (II)

Erstellen von einem Trading Administrator Panel in MQL5 (Teil VI): Das Panel zur Handelsverwaltung (II)

In diesem Artikel erweitern wir das Trade Management Panel unseres multifunktionalen Admin Panels. Wir führen eine leistungsstarke Hilfsfunktion ein, die den Code vereinfacht und die Lesbarkeit, Wartbarkeit und Effizienz verbessert. Wir zeigen Ihnen auch, wie Sie zusätzliche Schaltflächen nahtlos integrieren und die Nutzeroberfläche erweitern können, um ein breiteres Spektrum von Handelsaufgaben zu bewältigen. Ob es um die Verwaltung von Positionen, die Anpassung von Aufträgen oder die Vereinfachung von Nutzerinteraktionen geht, dieser Leitfaden hilft Ihnen bei der Entwicklung eines robusten, nutzerfreundlichen Trade Management Panels.
preview
Neuronale Netze leicht gemacht (Teil 74): Trajektorienvorhersage mit Anpassung

Neuronale Netze leicht gemacht (Teil 74): Trajektorienvorhersage mit Anpassung

In diesem Artikel wird eine recht effektive Methode zur Vorhersage der Trajektorie von Multi-Agenten vorgestellt, die sich an verschiedene Umweltbedingungen anpassen kann.
preview
Neuronale Netze leicht gemacht (Teil 87): Zeitreihen-Patching

Neuronale Netze leicht gemacht (Teil 87): Zeitreihen-Patching

Die Vorhersage spielt eine wichtige Rolle in der Zeitreihenanalyse. Im neuen Artikel werden wir über die Vorteile des Zeitreihen-Patchings sprechen.
preview
Nachrichtenhandel leicht gemacht (Teil 3): Ausführen des Handels

Nachrichtenhandel leicht gemacht (Teil 3): Ausführen des Handels

In diesem Artikel wird unser Nachrichtenhandelsexperte mit der Eröffnung von Handelsgeschäften auf der Grundlage des in unserer Datenbank gespeicherten Wirtschaftskalenders beginnen. Außerdem werden wir die Expertengrafiken verbessern, um mehr relevante Informationen über bevorstehende Wirtschaftsereignisse anzuzeigen.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 4): Schwebende, virtuelle Aufträge und Speicherstatus

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 4): Schwebende, virtuelle Aufträge und Speicherstatus

Nachdem wir mit der Entwicklung eines Mehrwährungs-EAs begonnen haben, konnten wir bereits einige Ergebnisse erzielen und mehrere Iterationen zur Verbesserung des Codes durchführen. Unser EA war jedoch nicht in der Lage, mit schwebenden Aufträgen zu arbeiten und den Betrieb nach dem Neustart des Terminals wieder aufzunehmen. Fügen wir diese Funktionen hinzu.
preview
Neuronale Netze leicht gemacht (Teil 83): Der „Conformer“-Algorithmus für räumlich-zeitliche kontinuierliche Aufmerksamkeitstransformation

Neuronale Netze leicht gemacht (Teil 83): Der „Conformer“-Algorithmus für räumlich-zeitliche kontinuierliche Aufmerksamkeitstransformation

In diesem Artikel wird der Conformer-Algorithmus vorgestellt, der ursprünglich für die Wettervorhersage entwickelt wurde, die in Bezug auf Variabilität und Launenhaftigkeit mit den Finanzmärkten verglichen werden kann. Conformer ist eine komplexe Methode. Es kombiniert die Vorteile von Aufmerksamkeitsmodellen und gewöhnlichen Differentialgleichungen.