有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
preview
时间序列的频域表示:功率谱

时间序列的频域表示:功率谱

在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。
preview
神经网络变得轻松(第二十二部分):递归模型的无监督学习

神经网络变得轻松(第二十二部分):递归模型的无监督学习

我们继续研究无监督学习算法。 这次我建议我们讨论自动编码器应用于递归模型训练时的特性。
DoEasy 库中的其他类(第六十九部分):图表对象集合类
DoEasy 库中的其他类(第六十九部分):图表对象集合类

DoEasy 库中的其他类(第六十九部分):图表对象集合类

在本文里,我启动图表对象集合类的开发。 该类存储图表对象及其子窗口和指标的集合列表,从而提供操控任何选定图表及其子窗口的能力,亦或同时处理多个图表列表。
preview
您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

约瑟夫·傅里叶(Joseph Fourier)引入的傅里叶变换是将复杂的数据波分解构为简单分量波的一种方法。 此功能对交易者来说可能更机敏,本文将对此进行关注。
DoEasy 函数库中的时间序列(第四十八部分):在单一子窗口里基于一个缓冲区的多周期、多品种指标
DoEasy 函数库中的时间序列(第四十八部分):在单一子窗口里基于一个缓冲区的多周期、多品种指标

DoEasy 函数库中的时间序列(第四十八部分):在单一子窗口里基于一个缓冲区的多周期、多品种指标

本文研究了一个示例,该示例使用单个指标缓冲区来创建多品种、多周期标准指标,以便在指标子窗口中进行构造和操作。 我会准备库类,以便在程序主窗口中与标准指标一起操作,并有多个缓冲区来显示其数据。
preview
神经网络变得轻松(第十七部分):降低维度

神经网络变得轻松(第十七部分):降低维度

在本部分中,我们将继续讨论人工智能模型。 即,我们研究无监督学习算法。 我们已经讨论了众多聚类算法之一。 在本文中,我将分享一种解决与降维相关问题的方法。
MQL5.community 中的名人?
MQL5.community 中的名人?

MQL5.community 中的名人?

MQL5.com 网站能够记住你的一切!你有多少帖子受热捧,您的文章有多受欢迎,您的程序在代码库中被下载了多少次 – 这仅仅是 MQL5.com 记住的一小部分。您的成就可以在个人资料中找到,但是整体情况呢?在本文中,我将显示所有 MQL5.community 会员成就的概貌。
preview
开发Python交易机器人(第三部分):实现基于模型的交易算法

开发Python交易机器人(第三部分):实现基于模型的交易算法

让我们继续阅读关于使用Python和MQL5开发交易机器人系列的文章。在本文中,我们将用Python中创建一个交易算法。
MQL5 应用商店一周岁啦
MQL5 应用商店一周岁啦

MQL5 应用商店一周岁啦

从“MQL5 应用商店”开始销售,转眼间已经一年过去了。一年来的兢兢业业勤勤恳恳,换来了一个新服务向 MetaTrader 5 平台自动交易和技术指标最大商店的华丽转身。
preview
数据科学和机器学习(第 04 部分):预测当前股市崩盘

数据科学和机器学习(第 04 部分):预测当前股市崩盘

在本文中,我将尝试运用我们的逻辑模型,基于美国经济的基本面,来预测股市崩盘,我们将重点关注 NETFLIX 和苹果。利用 2019 年和 2020 年之前的股市崩盘,我们看看我们的模型在当前的厄运和低迷中会表现如何。
preview
神经网络变得轻松(第二十五部分):实践迁移学习

神经网络变得轻松(第二十五部分):实践迁移学习

在最晚的两篇文章中,我们开发了一个创建和编辑神经网络模型的工具。 现在是时候通过实践示例来评估迁移学习技术的潜在用途了。
preview
神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

我们继续研究关联规则。 在前一篇文章中,我们讨论了这种类型问题的理论层面。 在本文中,我将展示利用 MQL5 实现 FP-Growth 方法。 我们还将采用真实数据测试所实现的解决方案。
preview
开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

我们继续关于使用Python和MQL5开发交易机器人的系列文章。今天我们将解决模型选择、训练、测试、交叉验证、网格搜索以及模型集成的问题。
preview
数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

在我们透彻之前,还有一些涵盖前馈神经网络的次要事情,设计就是其中之一。 针对我们的输入,看看我们如何构建和设计一个灵活的神经网络、隐藏层的数量、以及每个网络的节点。
开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放
开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放

开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放

在此,我们将查看如何在回放系统中使用更可靠的数据(交易跳价),而不必担心它是否被调整。
preview
数据科学与机器学习(第23部分):为什么LightGBM和XGBoost能超越许多AI模型?

数据科学与机器学习(第23部分):为什么LightGBM和XGBoost能超越许多AI模型?

这些先进的梯度提升决策树技术提供了卓越的性能和灵活性,使其成为金融建模和算法交易的理想选择。了解如何利用这些工具来优化您的交易策略、提高预测准确性,并在金融市场中获得竞争优势。
preview
从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)

从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)

掌握如何从网络向智能交易系统输入数据并非那么轻而易举。 如果不了解 MetaTrader 5 提供的所有可能性,就很难做到这一点。
preview
种群优化算法:蝙蝠算法(BA)

种群优化算法:蝙蝠算法(BA)

在本文中,我将研究蝙蝠算法(BA),它在平滑函数上表现出良好的收敛性。
preview
复购算法:模拟多币种交易

复购算法:模拟多币种交易

在本文中,我们将创建一个模拟多币种定价的数学模型,并针对多元化原理进行彻底研究,作为搜索提高交易效率机制的一部分,我在上一篇文章中已经开始了理论计算。
preview
来自专业程序员的提示(第三部分):日志。 连接到 Seq 日志收集和分析系统

来自专业程序员的提示(第三部分):日志。 连接到 Seq 日志收集和分析系统

Logger 类的实现能够统一和结构化打印到智能系统栏的日志消息。 连接到 Seq 日志收集和分析系统。 在线监视日志消息。
preview
数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。
preview
数据科学与机器学习(第 02 部分):逻辑回归

数据科学与机器学习(第 02 部分):逻辑回归

数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。
preview
解密开盘区间突破(ORB)日内交易策略

解密开盘区间突破(ORB)日内交易策略

开盘区间突破(ORB)策略基于这样一种理念:市场开盘后不久确立的初始交易区间,反映了买卖双方就价格价值达成共识的重要水平。通过识别突破某一特定区间上方或下方的走势,交易者可以把握随之而来的市场契机——当市场方向愈发明朗时,这种契机往往会进一步显现。本文将探讨三种源自康克瑞图姆集团(Concretum Group)改良的ORB策略。
preview
使用MQL5实现抛物线SAR趋势策略的自动化交易:打造高效的EA

使用MQL5实现抛物线SAR趋势策略的自动化交易:打造高效的EA

在本文中,我们将通过MQL5实现抛物线SAR趋势策略的自动化交易:打造高效的EA。该EA将根据抛物线SAR指标识别出的趋势进行交易。
DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表
DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。
preview
DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生

DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生

本文研究基于基准抽象指标衍生对象类的创建。 这些对象所提供功能,可访问创建的指标 EA,收集和获取各种指标和价格数据的数值统计信息。 同样,创建指标对象集合,从中可以访问程序中创建的每个指标的属性和数据。
preview
神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。
preview
神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

我们继续在强化学习模型中研究环境。 在本文中,我们将见识到另一种算法 — Go-Explore,它允许您在模型训练阶段有效地探索环境。
preview
DoEasy 函数库中的时间序列(第五十部分):多周期、多品种带位移的标准指标

DoEasy 函数库中的时间序列(第五十部分):多周期、多品种带位移的标准指标

在文章里,我们将改进函数库的方法,以便正确显示多品种、多周期的标准指标,即那些在当前品种图表上显示曲线,并可在设置中指定位移的指标。 同样,我们按照标准指标的操纵方法进行排序,并在最终的指标程序里将多余的代码移至函数库区域。
DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合
DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合

DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合

本文介绍如何创建指标缓冲区对象类的集合。 我计划测试为指标创建和操控任意数量缓冲区的能力(在 MQL 指标中可以创建的最大缓冲区数量为 512)。
preview
从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

在本文中,我们将继续研究如何从 web 获取数据,并在智能系统中使用它。 这次我们将着手开发一个替代系统。
preview
种群优化算法:细菌觅食优化(BFO)

种群优化算法:细菌觅食优化(BFO)

大肠杆菌觅食策略激发出科学家创建 BFO 优化算法的灵感。 该算法包含原创思路和有前景的优化方法,值得深入研究。
preview
神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

强化学习中的一个关键问题是环境探索。 之前,我们已经见识到基于内在好奇心的研究方法。 今天我提议看看另一种算法:凭借分歧进行探索。
preview
在 MQL5 中利用 ARIMA 模型进行预测

在 MQL5 中利用 ARIMA 模型进行预测

在本文中,我们继续开发构建 ARIMA 模型的 CArima 类,添加支持预测的直观方法。
preview
开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

这一次,我们尝试换一种不同的方式来实现 1 分钟的目标。 然而,这项任务并非如人们想象的那么简单。
“MQL5 应用商店” 2013 年一季度业绩
“MQL5 应用商店” 2013 年一季度业绩

“MQL5 应用商店” 2013 年一季度业绩

自创立以来,销售自动交易与技术指标的“MQL5 应用商店”已经吸引来了 250 多位开发者,他们发布了 580 款产品。对于那些已通过销售自己的产品获得丰厚利润的“MQL5 应用商店”卖家来讲,2013 年第一季度是相当成功的。
preview
数据科学与机器学习(第 03 部分):矩阵回归

数据科学与机器学习(第 03 部分):矩阵回归

这一次,我们的模型是由矩阵构建的,它更具灵活性,同时它允许我们构建更强大的模型,不仅可以处理五个独立变量,但凡我们保持在计算机的计算极限之内,它还可以处理更多变量,这篇文章肯定会是一篇阅读起来很有趣的文章。
preview
时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集

时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
机器学习和交易中的元模型:交易订单的原始时序

机器学习和交易中的元模型:交易订单的原始时序

机器学习中的元模型:很少或无人为干预的情况下自动创建交易系统 — 模型自行决定何时以及如何进行交易。
preview
以 MQL5 实现 ARIMA 训练算法

以 MQL5 实现 ARIMA 训练算法

在本文中,我们将实现一种算法,该算法应用了 Box 和 Jenkins 的自回归集成移动平均模型,并采用了函数最小化的 Powells 方法。 Box 和 Jenkins 表示,大多数时间序列可以由两个框架中之一个或两个来建模。