有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
MQL5 应用商店 2013 年二季度业绩
MQL5 应用商店 2013 年二季度业绩

MQL5 应用商店 2013 年二季度业绩

成功运营一年半的“MQL5 应用商店”,已成为了最大的交易策略与技术指标交易商店。全世界有 350 位开发者在此提供了大约 800 款交易应用程序。交易者为其 MetaTrader 5 终端购买和下载的交易程序,已逾 100.000。
preview
用于时间序列挖掘的数据标签(第 5 部分):使用 Socket 在 EA 中进行应用和测试

用于时间序列挖掘的数据标签(第 5 部分):使用 Socket 在 EA 中进行应用和测试

本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需求有针对性地进行数据标注,可以使训练出来的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

我们继续研究关联规则。 在前一篇文章中,我们讨论了这种类型问题的理论层面。 在本文中,我将展示利用 MQL5 实现 FP-Growth 方法。 我们还将采用真实数据测试所实现的解决方案。
开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放
开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放

开发回放系统 — 市场模拟(第 10 部分):仅用真实数据回放

在此,我们将查看如何在回放系统中使用更可靠的数据(交易跳价),而不必担心它是否被调整。
preview
神经网络变得轻松(第二十五部分):实践迁移学习

神经网络变得轻松(第二十五部分):实践迁移学习

在最晚的两篇文章中,我们开发了一个创建和编辑神经网络模型的工具。 现在是时候通过实践示例来评估迁移学习技术的潜在用途了。
preview
数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

在我们透彻之前,还有一些涵盖前馈神经网络的次要事情,设计就是其中之一。 针对我们的输入,看看我们如何构建和设计一个灵活的神经网络、隐藏层的数量、以及每个网络的节点。
preview
您应该知道的 MQL5 向导技术(第 05 部分):马尔可夫(Markov)链

您应该知道的 MQL5 向导技术(第 05 部分):马尔可夫(Markov)链

马尔可夫(Markov)链是一个强大的数学工具,能够针对包括金融在内的各个领域的时间序列数据进行建模和预测。 在金融时间序列建模和预测中,马尔可夫链通常用于模拟金融资产随时间的演变,例如股票价格或汇率。 马尔可夫链模型的主要优点之一是其简单性和易用性。
preview
数据科学和机器学习(第 04 部分):预测当前股市崩盘

数据科学和机器学习(第 04 部分):预测当前股市崩盘

在本文中,我将尝试运用我们的逻辑模型,基于美国经济的基本面,来预测股市崩盘,我们将重点关注 NETFLIX 和苹果。利用 2019 年和 2020 年之前的股市崩盘,我们看看我们的模型在当前的厄运和低迷中会表现如何。
preview
理解并有效地使用 MQL5 策略测试器

理解并有效地使用 MQL5 策略测试器

对于 MQL5 程序员或开发人员,一项基本需求就是掌握那些重要且颇具价值的工具。 其中一个工具是策略测试器,本文是理解和使用 MQL5 策略测试器的实用指南。
preview
数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。
preview
复购算法:模拟多币种交易

复购算法:模拟多币种交易

在本文中,我们将创建一个模拟多币种定价的数学模型,并针对多元化原理进行彻底研究,作为搜索提高交易效率机制的一部分,我在上一篇文章中已经开始了理论计算。
preview
种群优化算法:蝙蝠算法(BA)

种群优化算法:蝙蝠算法(BA)

在本文中,我将研究蝙蝠算法(BA),它在平滑函数上表现出良好的收敛性。
preview
DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生

DoEasy 函数库中的时间序列(第五十四部分):抽象基准指标类的衍生

本文研究基于基准抽象指标衍生对象类的创建。 这些对象所提供功能,可访问创建的指标 EA,收集和获取各种指标和价格数据的数值统计信息。 同样,创建指标对象集合,从中可以访问程序中创建的每个指标的属性和数据。
preview
从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)

从头开始开发智能交易系统(第 16 部分):访问 web 上的数据(II)

掌握如何从网络向智能交易系统输入数据并非那么轻而易举。 如果不了解 MetaTrader 5 提供的所有可能性,就很难做到这一点。
DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表
DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。
preview
神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

我们继续在强化学习模型中研究环境。 在本文中,我们将见识到另一种算法 — Go-Explore,它允许您在模型训练阶段有效地探索环境。
preview
您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换

约瑟夫·傅里叶(Joseph Fourier)引入的傅里叶变换是将复杂的数据波分解构为简单分量波的一种方法。 此功能对交易者来说可能更机敏,本文将对此进行关注。
DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合
DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合

DoEasy 函数库中的时间序列(第四十四部分):指标缓冲区对象类集合

本文介绍如何创建指标缓冲区对象类的集合。 我计划测试为指标创建和操控任意数量缓冲区的能力(在 MQL 指标中可以创建的最大缓冲区数量为 512)。
preview
在 MQL5 中利用 ARIMA 模型进行预测

在 MQL5 中利用 ARIMA 模型进行预测

在本文中,我们继续开发构建 ARIMA 模型的 CArima 类,添加支持预测的直观方法。
“MQL5 应用商店” 2013 年一季度业绩
“MQL5 应用商店” 2013 年一季度业绩

“MQL5 应用商店” 2013 年一季度业绩

自创立以来,销售自动交易与技术指标的“MQL5 应用商店”已经吸引来了 250 多位开发者,他们发布了 580 款产品。对于那些已通过销售自己的产品获得丰厚利润的“MQL5 应用商店”卖家来讲,2013 年第一季度是相当成功的。
preview
来自专业程序员的提示(第三部分):日志。 连接到 Seq 日志收集和分析系统

来自专业程序员的提示(第三部分):日志。 连接到 Seq 日志收集和分析系统

Logger 类的实现能够统一和结构化打印到智能系统栏的日志消息。 连接到 Seq 日志收集和分析系统。 在线监视日志消息。
preview
数据科学与机器学习(第 02 部分):逻辑回归

数据科学与机器学习(第 02 部分):逻辑回归

数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。
preview
DoEasy 函数库中的时间序列(第五十部分):多周期、多品种带位移的标准指标

DoEasy 函数库中的时间序列(第五十部分):多周期、多品种带位移的标准指标

在文章里,我们将改进函数库的方法,以便正确显示多品种、多周期的标准指标,即那些在当前品种图表上显示曲线,并可在设置中指定位移的指标。 同样,我们按照标准指标的操纵方法进行排序,并在最终的指标程序里将多余的代码移至函数库区域。
preview
以 MQL5 实现 ARIMA 训练算法

以 MQL5 实现 ARIMA 训练算法

在本文中,我们将实现一种算法,该算法应用了 Box 和 Jenkins 的自回归集成移动平均模型,并采用了函数最小化的 Powells 方法。 Box 和 Jenkins 表示,大多数时间序列可以由两个框架中之一个或两个来建模。
preview
开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

开发回放系统 — 市场模拟(第 02 部分):首次实验(II)

这一次,我们尝试换一种不同的方式来实现 1 分钟的目标。 然而,这项任务并非如人们想象的那么简单。
preview
开发Python交易机器人(第三部分):实现基于模型的交易算法

开发Python交易机器人(第三部分):实现基于模型的交易算法

让我们继续阅读关于使用Python和MQL5开发交易机器人系列的文章。在本文中,我们将用Python中创建一个交易算法。
preview
种群优化算法:细菌觅食优化(BFO)

种群优化算法:细菌觅食优化(BFO)

大肠杆菌觅食策略激发出科学家创建 BFO 优化算法的灵感。 该算法包含原创思路和有前景的优化方法,值得深入研究。
preview
时间序列的频域表示:功率谱

时间序列的频域表示:功率谱

在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。
preview
神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。
preview
神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

强化学习中的一个关键问题是环境探索。 之前,我们已经见识到基于内在好奇心的研究方法。 今天我提议看看另一种算法:凭借分歧进行探索。
preview
从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

从头开始开发智能交易系统(第 17 部分):访问 web 上的数据(III)

在本文中,我们将继续研究如何从 web 获取数据,并在智能系统中使用它。 这次我们将着手开发一个替代系统。
preview
MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
神经网络变得轻松(第十八部分):关联规则

神经网络变得轻松(第十八部分):关联规则

作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。
preview
利用 MQL5 实现 Janus 因子

利用 MQL5 实现 Janus 因子

加里·安德森(Gary Anderson)基于他称之为Janus因子的理论,开发了一套市场分析方法。 该理论描述了一套可揭示趋势和评估市场风险的指标。 在本文中,我们将利用 mql5 实现这些工具。
preview
开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

我们继续关于使用Python和MQL5开发交易机器人的系列文章。今天我们将解决模型选择、训练、测试、交叉验证、网格搜索以及模型集成的问题。
preview
开发回放系统 — 市场模拟(第 05 部分):加入预览

开发回放系统 — 市场模拟(第 05 部分):加入预览

我们已设法开发了一套以逼真和可访问的方式来实现市场回放的系统。 现在,我们继续我们的项目,并添加数据,从而提升回放行为。
preview
改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA

改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA

我们将创建一个简单的对冲 EA,作为我们更高级的 Grid-Hedge EA 的基础,它将是经典网格和经典对冲策略的混合体。在本文结束时,您将知晓如何创建一个简单的对冲策略,并且您还将知晓人们对于该策略是否能真正 100% 盈利的说法。
preview
数据科学与机器学习(第 03 部分):矩阵回归

数据科学与机器学习(第 03 部分):矩阵回归

这一次,我们的模型是由矩阵构建的,它更具灵活性,同时它允许我们构建更强大的模型,不仅可以处理五个独立变量,但凡我们保持在计算机的计算极限之内,它还可以处理更多变量,这篇文章肯定会是一篇阅读起来很有趣的文章。
preview
数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

截断型奇异值分解(SVD)和非负矩阵分解(NMF)都是降维技术。它们在制定数据驱动的交易策略方面都发挥着重要作用。探索降维的艺术,揭示洞察和优化定量分析,以明智的方式航行在错综复杂的金融市场。
preview
数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)

数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)

这是一种惰性算法,它不是基于训练数据集学习,而是以存储数据集替代,并在给定新样本时立即采取行动。 尽管它很简单,但它能用于各种实际应用。