有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
preview
克服集成ONNX(Open Neural Network Exchange )的挑战

克服集成ONNX(Open Neural Network Exchange )的挑战

ONNX是集成不同平台间复杂AI代码的强大工具,尽管它非常出色,但要想充分发挥其作用,就必须解决一些伴随而来的挑战。在本文中,我们将讨论您可能会遇到的一些常见问题,以及如何处理这些问题。
preview
无政府社会优化(ASO)算法

无政府社会优化(ASO)算法

本文中,我们将了解无政府社会优化(Anarchic Society Optimization,ASO)算法,并探讨一个基于无政府社会(一个摆脱中央权力和各种等级制度的异常社会交互系统)中参与者非理性与冒险行为的算法是如何能够探索解空间并避免陷入局部最优陷阱的。本文提出了一种适用于连续问题和离散问题的统一ASO结构。
preview
您应当知道的 MQL5 向导技术(第 08 部分):感知器

您应当知道的 MQL5 向导技术(第 08 部分):感知器

感知器,单隐藏层网络,对于任何精熟基本自动交易,并希望涉足神经网络的人来说都是一个很好的切入点。我们查看这是如何在一个信号类当中一步一步组装实现的,其是 MQL5 向导类中用于智能交易系统的部分。
preview
开发回放系统(第 35 部分):进行调整 (一)

开发回放系统(第 35 部分):进行调整 (一)

在向前迈进之前,我们需要解决几个问题。这些实际上并不是必需的修正,而是对类的管理和使用方式的改进。原因是系统内的某些相互作用导致了故障的发生。尽管我们试图找出这些故障的原因以消除它们,但所有这些尝试都没有成功。其中有些情况完全不合理,例如,当我们在 C/C++ 中使用指针或递归时,程序就会崩溃。
preview
开发回放系统(第 36 部分):进行调整(二)

开发回放系统(第 36 部分):进行调整(二)

让我们的程序员生活举步维艰的原因之一就是做出假设。在本文中,我将向您展示假设是多么危险:例如在 MQL5 编程中假设类型将具有某个特定值,或是在 MetaTrader 5 中假设不同服务器的工作方式相同。
preview
改编版 MQL5 网格对冲 EA(第 IV 部分):优化简单网格策略(I)

改编版 MQL5 网格对冲 EA(第 IV 部分):优化简单网格策略(I)

在第四篇中,我们重新审视了之前开发的“简单对冲”和“简单网格”智能系统(EA)。我们的专注点转移到通过数学分析和暴力方式完善简单网格 EA,旨在优化策略用法。本文深入策略的数学优化,为在以后文章中探索未来基于编码的优化奠定了基础。
preview
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。
preview
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
preview
可视化交易图表(第二部分):数据图形化展示

可视化交易图表(第二部分):数据图形化展示

接下来,我们将从头开始编写一个脚本,以简化交易订单截图的加载过程,便于分析交易入场点。所有关于单个交易的必要信息都将方便地显示在一个图表上,并且该图表具备绘制不同时间框架的能力。
preview
您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数

您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数

赫斯特(Hurst)指数是时间序列长期自相关度的衡量度。据了解,它捕获时间序列的长期属性,故在时间序列分析中也具有一定的分量,即使在财经/金融时间序列之外亦然。然而,我们专注于其对交易者的潜在益处,研究如何将该计量度与移动平均线配对,从而构建潜在的稳健信号。
preview
开发回放系统(第 44 部分):Chart Trader 项目(三)

开发回放系统(第 44 部分):Chart Trader 项目(三)

在上一篇文章中,我介绍了如何操作模板数据以便在 OBJ_CHART 中使用。在那篇文章中,我只是概述了这一主题,并没有深入探讨细节,因为在那个版本中,这项工作是以非常简单的方式完成的。这样做是为了更容易解释内容,因为尽管很多事情表面上很简单,但其中有些并不那么明显,如果不了解最简单、最基本的部分,就无法真正理解全局。
preview
种群优化算法:鸟群算法(BSA)

种群优化算法:鸟群算法(BSA)

本文探讨了受自然界鸟类集群行为启发而产生的基于鸟群的算法(BSA)。BSA中的个体采用不同的搜索策略,包括在飞行、警戒和觅食行为之间的切换,使得该算法具有多面性。它利用鸟类集群、交流、适应性、领导与跟随等规则来高效地找到最优解。
preview
化学反应优化(CRO)算法(第一部分):在优化中处理化学

化学反应优化(CRO)算法(第一部分):在优化中处理化学

在本文的第一部分中,我们将深入化学反应的世界并发现一种新的优化方法!化学反应优化 (CRO,Chemical reaction optimization) 利用热力学定律得出的原理来实现有效的结果。我们将揭示分解、合成和其他化学过程的秘密,这些秘密成为了这种创新方法的基础。
preview
量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

本文探讨了价值风险(VaR)模型在多货币投资组合优化中的潜力。借助 Python 的强大功能和 MetaTrader 5 的功能,我们展示了如何实施 VaR 分析,以实现高效的资金分配和头寸管理。从理论基础到实际实施,文章涵盖了将 VaR——这一最稳健的风险计算系统之一——应用于算法交易的方方面面。
preview
种群优化算法:模拟退火(SA)。第 1 部分

种群优化算法:模拟退火(SA)。第 1 部分

模拟退火算法是受到金属退火工艺启发的一种元启发式算法。在本文中,我们将对算法进行全面分析,并揭示围绕这种广为人知的优化方法的一些常见信仰和神话。本文的第二部分将研究自定义模拟各向同性退火(SIA)算法。
preview
数据处理的分组方法:在MQL5中实现组合算法

数据处理的分组方法:在MQL5中实现组合算法

在本文中,我们将继续探索数据处理家族分组算法,在MQL5中实现组合算法(Combinatorial Algorithm)及其优化版本——组合选择算法(Combinatorial Selective Algorithm)。
preview
种群优化算法:二进制遗传算法(BGA)。第 II 部分

种群优化算法:二进制遗传算法(BGA)。第 II 部分

在本文中,我们将继续研究二进制遗传算法(BGA),它模拟自然界生物遗传物质中发生的自然过程。
preview
两样本Kolmogorov-Smirnov检验作为时间序列非平稳性的指标

两样本Kolmogorov-Smirnov检验作为时间序列非平稳性的指标

本文探讨了最著名的非参数同质性检验之一——两样本柯尔莫哥洛夫-斯米尔诺夫(Kolmogorov-Smirnov)检验。文章对模型数据和实际价格都进行了分析。此外,本文还给出了构建非平稳性指标(iSmirnovDistance)的一个示例。
preview
用Python和MQL5进行投资组合优化

用Python和MQL5进行投资组合优化

本文探讨了使用Python和MQL5结合MetaTrader 5进行高级投资组合优化的技术。文章展示了如何开发用于数据分析、资产配置和交易信号生成的算法,强调了在现代金融管理和风险缓解中数据驱动决策的重要性。
preview
开发回放系统(第 46 部分):Chart Trade 项目(五)

开发回放系统(第 46 部分):Chart Trade 项目(五)

厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。
preview
开发回放系统(第 43 部分):Chart Trade 项目(II)

开发回放系统(第 43 部分):Chart Trade 项目(II)

大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。
preview
头脑风暴优化算法(第二部分): 多模态

头脑风暴优化算法(第二部分): 多模态

在文章的第二部分,我们将继续讨论BSO算法的实际应用,对测试函数进行测试,并将BSO的效率与其他优化方法进行比较。
preview
开发回放系统(第 38 部分):铺路(II)

开发回放系统(第 38 部分):铺路(II)

许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。
preview
种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。
preview
《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》

《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》

循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。
preview
您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易

您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易

默认情况下,由于组装类中使用了 MQL5 代码架构,故基于多时间帧策略,且由向导组装的智能系统无法进行测试。我们探索一种绕过该限制的方式,看看搭配二次移动平均线的情况下,研究运用多时间帧策略的可能性。
preview
因果推断中的时间序列聚类

因果推断中的时间序列聚类

在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。
preview
头脑风暴优化算法(第一部分):聚类

头脑风暴优化算法(第一部分):聚类

在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。
preview
数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具

数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具

探索支持向量机 (SVM,Support Vector Machines) 在塑造未来交易中不可或缺的作用。本综合指南探讨了 SVM 如何提升您的交易策略,增强决策能力,并在金融市场中释放新的机会。通过实际应用、分步教程和专家见解深入了解 SVM 的世界。为自己配备必要的工具,帮助您应对现代交易的复杂性。使用 SVM 提升您的交易能力 — 这是每个交易者工具箱中的必备工具。
preview
开发回放系统(第 49 部分):事情变得复杂 (一)

开发回放系统(第 49 部分):事情变得复杂 (一)

在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。
preview
开发回放系统(第 34 部分):订单系统 (三)

开发回放系统(第 34 部分):订单系统 (三)

在本文中,我们将完成构建的第一阶段。虽然这部分内容很快就能完成,但我将介绍之前没有讨论过的细节。我将解释一些许多人不理解的问题。你知道为什么要按 Shift 或 Ctrl 键吗?
preview
您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。
preview
基于转移熵的时间序列因果分析

基于转移熵的时间序列因果分析

在本文中,我们讨论了如何将统计因果关系应用于识别预测变量。我们将探讨因果关系与传递熵(Transfer Entropy, TE)之间的联系,并展示用于检测两个变量之间信息方向性传递的MQL5代码。
preview
开发回放系统(第 52 部分):事情变得复杂(四)

开发回放系统(第 52 部分):事情变得复杂(四)

在本文中,我们将修改鼠标指针,以实现与控制指标的交互,确保可靠、稳定地运行。
preview
S&P 500交易策略在MQL5中的实现(适合初学者)

S&P 500交易策略在MQL5中的实现(适合初学者)

了解如何利用MQL5精准预测标普500指数,结合经典技术分析以增强稳定性,并将算法与经过时间验证的原则相结合,以获得稳健的市场洞察。
preview
数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

深入神经网络的心脏,我们将揭秘神经网络内部所用的优化算法。在本文中,探索解锁神经网络全部潜力的关键技术,把您的模型准确性和效率推向新的高度。
preview
非平稳过程和伪回归

非平稳过程和伪回归

本文基于蒙特卡洛模拟,展示了回归分析非平稳过程时产生的伪回归现象。
preview
开发回放系统(第 58 部分):重返服务工作

开发回放系统(第 58 部分):重返服务工作

在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。
preview
您应当知道的 MQL5 向导技术(第 24 部分):移动平均

您应当知道的 MQL5 向导技术(第 24 部分):移动平均

移动平均是大多数交易者使用和理解的最常见指标。我们探讨一些在 MQL5 向导组装智能系统时可能不那么常见的可能用例。
preview
动物迁徙优化(AMO)算法

动物迁徙优化(AMO)算法

本文介绍了AMO算法,该算法通过模拟动物的季节性迁徙来寻找适合生存和繁殖的最优条件。AMO的主要特点包括使用拓扑邻域和概率更新机制,使得其易于实现,并且能够灵活应用于各种优化任务。