《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》
循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。
开发一款波段交易入场监控智能交易系统(EA)
随着年末临近,长期交易者往往会回顾市场历史数据,分析市场行为与趋势,以期预测未来可能的走势。本文将探讨如何使用MQL5开发一款长期交易入场监控智能交易系统(EA)。该系统的开发旨在解决因手动交易和缺乏自动化监控系统而导致的长期交易机会错失问题。我们将以交易量最为活跃的货币对之一为例,有效制定策略并开发我们的解决方案。
卡尔曼滤波器在外汇均值回归策略中的应用
卡尔曼滤波器是一种递归算法,在算法交易中用于通过滤除价格走势中的噪声来估计金融时间序列的真实状态。它能够根据新的市场数据动态更新预测,这使得它在均值回归等自适应策略中极具价值。本文首先介绍卡尔曼滤波器,涵盖其计算方法和实现方式。接下来,我们以外汇领域一个经典的均值回归策略为例,应用该滤波器。最后,我们通过将卡尔曼滤波器与移动平均线(MA)在外汇不同货币对上进行比较,开展各种统计分析。
基于时间、价格和成交量创建 3D 柱状图引入波动率测量
本文探讨了多元三维价格图表及其创建方法。我们还将探讨 3D 柱状图如何预测价格反转,以及 Python 和 MetaTrader 5 如何让我们实时绘制这些成交量柱状图。
黑洞算法(BHA)
黑洞算法(BHA)利用黑洞引力原理来优化解。在本文中,我们将考察 BHA 如何在避免局部极端情况的同时,吸引最佳解,以及为什么该算法已成为解决复杂问题的强大工具。学习简单的思路如何在优化世界带来令人印象深刻的结果。
让新闻交易轻松上手(第五部分):执行交易(2)
本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。
基于Python与MQL5的多模块交易机器人(第一部分):构建基础架构与首个模块
我们将开发一个模块化交易系统,该系统结合了 Python 进行数据分析,并使用 MQL5 执行交易。四个独立模块并行监控市场的不同方面:成交量、套利、经济指标和风险,并使用包含400棵树的随机森林( RandomForest )。特别强调风险管理,因为即使是最先进的交易算法,如果没有适当的风险管理,也是毫无用处的。
群体优化算法:抵抗陷入局部极值(第一部分)
本文介绍了一个独特的实验,旨在研究群体优化算法在群体多样性较低时有效逃脱局部最小值并达到全局最大值的能力。朝着这个方向努力将进一步了解哪些特定算法可以使用用户设置的坐标作为起点成功地继续搜索,以及哪些因素会影响它们的成功。
开发回放系统(第 45 部分):Chart Trade 项目(四)
本文的主要目的是介绍和解释 C_ChartFloatingRAD 类。我们有一个 Chart Trade 指标,它的工作方式非常有趣。您可能已经注意到了,图表上的对象数量仍然很少,但我们却获得了预期的功能。指标中的数值是可以编辑的。问题是,这怎么可能呢?这篇文章将使答案变得更加清晰。
您应当知道的 MQL5 向导技术(第 44 部分):平均真实范围(ATR)技术指标
ATR 振荡指标是一款非常流行的指标,权当波动率代表,尤其是在交易量数据稀缺的外汇市场当中。我们以形态为基础来验证这一点,就如我们对先前指标所做那样,并分享策略和测试报告,致谢 MQL5 向导库的类和汇编。
分析交易所价格的二进制代码(第一部分):技术分析的新视角
本文提出了一种基于将价格波动转换为二进制代码的技术分析创新方法。作者展示了市场行为的各个方面——从简单的价格波动到复杂形态——如何被编码为一系列的0和1。
基于Python和MQL5的特征工程(第二部分):价格角度
在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
开发回放系统(第 75 部分):新 Chart Trade(二)
在本文中,我们将讨论 C_ChartFloatingRAD 类。这就是 Chart Trade 发挥作用的原因。然而,解释并未就此结束,我们将在下一篇文章中完成它,因为这篇文章的内容相当广泛,需要深入理解。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
开发回放系统(第 41 部分):启动第二阶段(二)
如果到目前为止,你觉得一切都很好,那就说明你在开始开发应用程序时,并没有真正考虑到长远的问题。随着时间的推移,你将不再需要为新的应用程序编程,只需让它们协同工作即可。让我们看看如何完成鼠标指标的组装。
因果推断中的时间序列聚类
在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。
价格行为分析工具包开发(第二十一部分):市场结构反转检测工具
市场结构反转检测智能交易系统(EA) 是您洞察市场情绪变化的得力助手,能够实时监控市场结构的潜在反转信号。该工具通过基于平均真实波幅(ATR)的动态阈值,精准识别市场结构的反转点,并在图表上以清晰的可视化指标标记每一处更高低点和更低高点。依托MQL5的极速执行能力与高度灵活的API接口,该工具提供实时动态分析,可以自动调整显示效果,确保图表清晰易读,并提供实时数据仪表板,实时统计反转次数与时间分布。此外,还支持自定义声音警报和移动端推送通知,确保关键信号无遗漏,通过将原始价格波动转化为可执行的交易策略,帮助您在瞬息万变的市场中抢占先机。
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压
AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。
价格行为分析工具包开发(第二部分):分析注释脚本
秉承我们简化价格行为分析的核心理念,我们很高兴推出又一款可显著提升市场分析能力、助力您做出精准决策的工具。该工具可展示关键技术指标(如前一日价格、重要支撑阻力位、成交量),并在图表上自动生成可视化标记。
数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易
CatBoost AI 模型最近在机器学习社区中广受欢迎,因为它们的预测准确性、效率、及针对分散和困难数据集的健壮性。在本文中,我们将详细讨论如何实现这些类型的模型,进而尝试进击外汇市场。
MQL5 交易工具包(第 4 部分):开发历史管理 EX5 库
通过详细的分步方法创建扩展的历史管理 EX5 库,学习如何使用 MQL5 检索、处理、分类、排序、分析和管理已平仓头寸、订单和交易历史。
MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作
本文是以 MQL5 实现范畴论系列的延续。 在这里,我们继续将“幺半群 — 动作”当为幺半群变换的一种手段,如上一篇文章所涵盖的内容,从而增加了应用。
价格行为分析工具包开发(第十八部分):四分位理论(3)——四分位看板
本文中,我们在原有四分位脚本的基础上新增 "四分位看板"(Quarters Board) 工具,该工具让您无需返回代码即可直接在图表上切换四分位水平。您可以轻松启用或禁用特定水平,EA还会提供趋势方向注释,帮助您更好地理解市场走势。
使用 MetaTrader 5 在 Python 中查找自定义货币对形态
外汇市场是否存在重复的形态和规律?我决定使用 Python 和 MetaTrader 5 创建自己的形态分析系统。一种数学和编程的共生关系,用于征服外汇。
开发回放系统(第 44 部分):Chart Trader 项目(三)
在上一篇文章中,我介绍了如何操作模板数据以便在 OBJ_CHART 中使用。在那篇文章中,我只是概述了这一主题,并没有深入探讨细节,因为在那个版本中,这项工作是以非常简单的方式完成的。这样做是为了更容易解释内容,因为尽管很多事情表面上很简单,但其中有些并不那么明显,如果不了解最简单、最基本的部分,就无法真正理解全局。
大气云模型优化(ACMO):理论
本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM
限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
开发回放系统(第 70 部分):取得正确的时间(三)
在本文中,我们将了解如何正确有效地使用 CustomBookAdd 函数。尽管它看起来很简单,但它有许多细微差别。例如,它允许您告诉鼠标指标自定义交易品种是否正在竞价、交易或市场是否关闭。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
动物迁徙优化(AMO)算法
本文介绍了AMO算法,该算法通过模拟动物的季节性迁徙来寻找适合生存和繁殖的最优条件。AMO的主要特点包括使用拓扑邻域和概率更新机制,使得其易于实现,并且能够灵活应用于各种优化任务。
开发回放系统(第 58 部分):重返服务工作
在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。
用Python和MQL5进行投资组合优化
本文探讨了使用Python和MQL5结合MetaTrader 5进行高级投资组合优化的技术。文章展示了如何开发用于数据分析、资产配置和交易信号生成的算法,强调了在现代金融管理和风险缓解中数据驱动决策的重要性。