基于MQL5和Python的自优化EA(第五部分):深度马尔可夫模型
在本次讨论中,我们将把一个简单的马尔可夫链应用于相对强弱指标(RSI),以观察指标穿过关键水平后的价格行为。我们得出结论,当RSI处于11-20区间时,会产生最强的买入信号;而当RSI处于71-80区间时,会产生最强的卖出信号,这在新西兰元兑日元(NZDJPY)货币对上表现得尤为明显。我们将展示如何通过对数据的处理和分析,直接从您所拥有的数据中构建出最优的交易策略。此外,我们还将展示如何训练一个深度神经网络,使其能够最优地利用转移矩阵。
您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易
默认情况下,由于组装类中使用了 MQL5 代码架构,故基于多时间帧策略,且由向导组装的智能系统无法进行测试。我们探索一种绕过该限制的方式,看看搭配二次移动平均线的情况下,研究运用多时间帧策略的可能性。
原子轨道搜索(AOS)算法
本文探讨了原子轨道搜索(Atomic Orbital Search,AOS)算法,该算法运用原子轨道模型的概念来模拟解的搜索过程。此算法基于概率分布以及原子内相互作用的动力学原理。本文详细阐述了关于AOS算法的数学层面,包括候选解位置的更新方式,以及能量吸收与释放的机制。AOS算法通过为计算问题提供一种创新的优化方法,为将量子原理应用于计算问题开辟了新思路。
开发回放系统(第 46 部分):Chart Trade 项目(五)
厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。
随机数生成器质量对优化算法效率的影响
在这篇文章中,我们将探讨梅森旋转算法(Mersenne Twister)随机数生成器,并将其与MQL5中的标准随机数生成器进行比较。此外,我们还将研究随机数生成器的质量对优化算法结果的影响。
您应当知道的 MQL5 向导技术(第 32 部分):正则化
正则化是一种在贯穿神经网络各层应用离散权重,按比例惩罚损失函数的形式。我们来考察其重要性,对于一些不同的正则化形式,能够在配合向导组装的智能系统运行测试。
开发回放系统(第 35 部分):进行调整 (一)
在向前迈进之前,我们需要解决几个问题。这些实际上并不是必需的修正,而是对类的管理和使用方式的改进。原因是系统内的某些相互作用导致了故障的发生。尽管我们试图找出这些故障的原因以消除它们,但所有这些尝试都没有成功。其中有些情况完全不合理,例如,当我们在 C/C++ 中使用指针或递归时,程序就会崩溃。
开发回放系统(第 49 部分):事情变得复杂 (一)
在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。
数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘
深入神经网络的心脏,我们将揭秘神经网络内部所用的优化算法。在本文中,探索解锁神经网络全部潜力的关键技术,把您的模型准确性和效率推向新的高度。
用于预测金融时间序列的生物神经元
我们将为时间序列预测建立一个生物学上正确的神经元系统。在神经网络架构中引入类似等离子体的环境创造了一种“集体智能”,其中每个神经元不仅通过直接连接,还通过长距离电磁相互作用影响系统的运行。让我们看看神经大脑建模系统在市场上的表现。
接受者操作特征(ROC)曲线入门
ROC 曲线是用于评估分类器性能的图形工具。尽管 ROC 图形相对简单,但在实践中使用它们时,仍存在一些常见的误解和误区。本文旨在为那些希望理解分类器性能评估的交易者提供一份关于 ROC 图形的入门介绍。
使用MQL5中的动态时间规整进行模式识别
在本文中,我们探讨了动态时间规整(Dynamic Time Warping,DTW)作为识别金融时间序列中预测模式的一种方法。我们将深入了解其工作原理,并在纯MQL5语言中展示其实现方法。
头脑风暴优化算法(第一部分):聚类
在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。
您应当知道的 MQL5 向导技术(第 43 部分):依据 SARSA 进行强化学习
SARSA 是 “State-Action-Reward-State-Action” 的缩写,是另一种能在实现强化学习时运用的算法。故此,正如我们在 Q-学习 和 DQN 中看到的那样,我们考察了如何在向导汇编的智能系统中探索和实现它,将其作为独立模型,而不仅仅是一种训练机制。
基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线
移动平均线无疑是我们的 AI 模型进行预测的最佳指标。然而,我们可以通过严谨数据变换来进一步提高其准确性。本文将展示如何构建能够预测更远范围的AI模型,超越您目前所实现的水平,同时不会显著降低准确率。移动平均线的实用性确实令人惊叹。
随机优化和最优控制示例
这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。
开发回放系统(第 39 部分):铺平道路(三)
在进入开发的第二阶段之前,我们需要修正一些想法。您知道如何让 MQL5 满足您的需求吗?您是否尝试过超出文档所包含的范围?如果没有,那就做好准备吧。因为我们将做一些大多数人通常不会做的事情。
开发回放系统(第 36 部分):进行调整(二)
让我们的程序员生活举步维艰的原因之一就是做出假设。在本文中,我将向您展示假设是多么危险:例如在 MQL5 编程中假设类型将具有某个特定值,或是在 MetaTrader 5 中假设不同服务器的工作方式相同。
您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试
默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。
您应当知道的 MQL5 向导技术(第 08 部分):感知器
感知器,单隐藏层网络,对于任何精熟基本自动交易,并希望涉足神经网络的人来说都是一个很好的切入点。我们查看这是如何在一个信号类当中一步一步组装实现的,其是 MQL5 向导类中用于智能交易系统的部分。
种群优化算法:模拟退火(SA)。第 1 部分
模拟退火算法是受到金属退火工艺启发的一种元启发式算法。在本文中,我们将对算法进行全面分析,并揭示围绕这种广为人知的优化方法的一些常见信仰和神话。本文的第二部分将研究自定义模拟各向同性退火(SIA)算法。
使用Python与MQL5进行多个交易品种分析(第二部分):主成分分析在投资组合优化中的应用
交易账户风险管理是所有交易者面临的共同挑战。我们如何在MetaTrader 5中开发能够动态学习不同交易品种的高、中、低风险模式的交易应用?通过主成分分析(PCA),我们可以更有效地控制投资组合的方差。本文将演示如何从MetaTrader 5获取的市场数据中,训练出这三种风险模式的交易模型。
开发回放系统(第 57 部分):了解测试服务
需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
使用图表可视化交易(第一部分):选择分析时段
在这里,我们将从头开始编写一个脚本,以简化卸载交易截图用于分析交易入场点的过程。能够方便地将所有关于单个交易的必要信息展示在一个图表上,并且该图表可以根据不同时间周期绘制。
算法交易中的神经符号化系统:结合符号化规则和神经网络
本文讲述开发混合交易系统的经验,即结合经典技术分析与神经网络。作者从基本形态分析、神经网络结构、到交易决策背后的机制,提供了系统架构的详细分析,并分享了真实代码和实践观察。
开发回放系统(第 38 部分):铺路(II)
许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理
贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
开发回放系统(第 72 部分):异常通信(一)
我们今天创造的东西将很难理解。因此,在这篇文章中,我将只谈论初始阶段。请仔细阅读这篇文章,这是我们继续下一步的重要前提。本材料的目的纯粹是教学性的,因为我们只会学习和掌握所提出的概念,而没有实际应用。
数据处理的分组方法:在MQL5中实现组合算法
在本文中,我们将继续探索数据处理家族分组算法,在MQL5中实现组合算法(Combinatorial Algorithm)及其优化版本——组合选择算法(Combinatorial Selective Algorithm)。
ALGLIB 库优化方法(第二部分)
在本文中,我们将继续研究ALGLIB库中剩余的优化方法,并特别关注它们在复杂多维函数上的测试表现。这样我们不仅能够评估每种算法的效率,还能在不同条件下比较出它们的优势与不足。
开发回放系统(第 43 部分):Chart Trade 项目(II)
大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。
开发回放系统(第 69 部分):取得正确的时间(二)
今天我们将看看为什么我们需要 iSpread 功能。同时,我们将了解当没有可用的分时报价时,系统如何通知我们柱形的剩余时间。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
基于人工生态系统的优化(AEO)算法
本文探讨了一种元启发式算法——基于人工生态系统的优化(Artificial Ecosystem-based Optimization, AEO)算法。该算法通过生成初始解种群并应用自适应更新策略,模拟生态系统各组成部分之间的相互作用。文中详细阐述了AEO算法的运行阶段,包括消耗阶段与分解阶段,以及不同智能体的行为策略。文章还介绍了该算法的特点和优势。
开发回放系统(第 68 部分):取得正确的时间(一)
今天,我们将继续努力,让鼠标指针告诉我们在流动性较低期间,一根柱形上还剩下多少时间。尽管乍一看似乎很简单,但实际上这项任务要困难得多。这涉及一些我们必须克服的障碍。因此,为了理解以下部分,您必须很好地理解子系列第一部分的材料。
分析交易所价格的二进制代码(第二部分):转换为 BIP39 并编写 GPT 模型
继续尝试破译价格走势……我们将通过将二进制价格代码转换为 BIP39 来获得一个“市场词典”,那么,对这个词典进行语言学分析又如何呢?在本文中,我们将深入探讨一种创新的交易所数据分析方法,并研究如何将现代自然语言处理技术应用于市场语言。