有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
preview
开发回放系统(第 64 部分):玩转服务(五)

开发回放系统(第 64 部分):玩转服务(五)

在本文中,我们将介绍如何修复代码中的两个错误。然而,我将尝试以一种有助于初学者程序员理解事情并不总是如你所愿的方式解释它们。无论如何,这是一个学习的机会。此处提供的内容仅用于教育目的。本应用程序不应被视为最终文件,其目的除了探讨所提出的概念之外,不应有任何其它用途。
preview
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。
preview
开发回放系统(第 65 部分):玩转服务(六)

开发回放系统(第 65 部分):玩转服务(六)

在本文中,我们将研究如何在与回放/模拟应用程序结合使用时实现和解决鼠标指针问题。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
让新闻交易轻松上手(第4部分):性能增强

让新闻交易轻松上手(第4部分):性能增强

本文将深入探讨改进EA在策略测试器中运行时间的方法,通过编写代码将新闻事件时间按小时分类。在指定的小时段内将访问这些新闻事件。这样确保了EA能够在高波动性和低波动性环境中高效管理事件驱动的交易。
preview
您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。
preview
ALGLIB 库优化方法(第二部分)

ALGLIB 库优化方法(第二部分)

在本文中,我们将继续研究ALGLIB库中剩余的优化方法,并特别关注它们在复杂多维函数上的测试表现。这样我们不仅能够评估每种算法的效率,还能在不同条件下比较出它们的优势与不足。
preview
在Python和MQL5中应用局部特征选择

在Python和MQL5中应用局部特征选择

本文探讨了Narges Armanfard等人在论文《数据分类的局部特征选择》中介绍的一种特征选择算法。该算法使用Python实现,用于构建二元分类器模型,这些模型可以与MetaTrader 5应用程序集成以进行推理。
preview
开发回放系统(第 60 部分):玩转服务(一)

开发回放系统(第 60 部分):玩转服务(一)

很长一段时间以来,我们一直在研究指标,但现在是时候让服务重新工作了,看看图表是如何根据提供的数据构建的。然而,由于整个事情并没有那么简单,我们必须注意了解前方等待我们的是什么。
preview
您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

高斯(Gaussian)进程核心是正态分布的协方差函数,能够在预测中扮演角色。我们在 MQL5 的自定义信号类中探索这种独特的算法,看看它是否可当作主要入场和离场信号。
preview
ALGLIB库优化方法(第一部分)

ALGLIB库优化方法(第一部分)

在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。
preview
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。