有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
preview
开发回放系统 — 市场模拟(第 15 部分):模拟器的诞生(V)- 随机游走

开发回放系统 — 市场模拟(第 15 部分):模拟器的诞生(V)- 随机游走

在本文中,我们将完成自有系统模拟器的开发。 于此的主要目标是就上一篇文章中讨论的算法进项配置。 该算法旨在创建随机游走走势。 因此,为了明白今天的讲义,有必要了解以前文章的内容。 如果您尚未跟踪模拟器的开发,我建议您从头开始阅读本系列文章。 否则,您也许对此处将要讲解的内容不明所以。
preview
通过配对交易中的均值回归进行统计套利:用数学战胜市场

通过配对交易中的均值回归进行统计套利:用数学战胜市场

本文描述了投资组合层面的统计套利基础知识。其目标是帮助没有深厚数学知识的读者理解统计套利的原则,并提出一个概念性的起点框架。文章包含一个可运行的智能交易系统(EA)、一些关于其一年回测的笔记,以及用于复现实验的相应回测配置设置(.ini 文件)。
preview
开发回放系统(第32部分):订单系统(一)

开发回放系统(第32部分):订单系统(一)

在我们迄今为止开发的所有东西中,正如你可能会注意到并最终同意的那样,这个系统是最复杂的。现在我们需要做一些非常简单的事情:让我们的系统模拟交易服务器的操作。准确实现交易服务器操作方式似乎是一件轻而易举的事情。至少说起来是这样。但我们需要这样做,以便对回放/模拟系统的用户来说,一切都是无缝和透明的。
preview
开发回放系统 — 市场模拟(第 12 部分):模拟器的诞生(II)

开发回放系统 — 市场模拟(第 12 部分):模拟器的诞生(II)

开发模拟器可能比看起来有趣得多。 今天,我们将朝着这个方向再走几步,因为事情变得越来越有趣。
preview
龟壳演化算法(TSEA)

龟壳演化算法(TSEA)

这是一种受乌龟壳演化启发的独特优化算法。TSEA算法模拟了角质化皮肤区域的逐渐形成,这些区域代表了一个问题的最优解。最优解会变得更加“坚硬”,并位于更靠近外层表面的位置,而不太理想的解则保持“较软”的状态,并位于内部。该算法通过根据质量和距离对解进行聚类,从而保留了不太理想的选项,并提供了灵活性和适应性。
preview
开发回放系统(第33部分):订单系统(二)

开发回放系统(第33部分):订单系统(二)

今天,我们将继续开发订单系统。正如您将看到的,我们将大规模重用其他文章中已经展示的内容。尽管如此,你还是会在这篇文章中获得一点奖励。首先,我们将开发一个可以与真实交易服务器一起使用的系统,无论是从模拟账户还是从真实账户。我们将广泛使用MetaTrader 5平台,该平台将从一开始就为我们提供所有必要的支持。
preview
开发回放系统 — 市场模拟(第 04 部分):调整设置(II)

开发回放系统 — 市场模拟(第 04 部分):调整设置(II)

我们继续创建系统和控制。 没有掌控服务的能力,就很难向前推进和改进系统。
preview
暴力方式搜素形态(第 V 部分):全新视角

暴力方式搜素形态(第 V 部分):全新视角

在这篇文章中,我将展示一种完全不同的方式进行算法交易,我经历了很长一段时间后才最终遇到它。当然,这一切所作所为全靠我的暴力程序,其经历了许多更改,令其能够并发解决若干问题。尽管如此,这篇文章明面上仍然比较笼统和尽可能简单,这就是为什么它也适合那些对暴力一无所知的人。
preview
在 MQL5 中实现增广迪基–富勒检验

在 MQL5 中实现增广迪基–富勒检验

在本文中,我们演示了增广迪基–富勒(Augmented Dickey-Fuller,ADF)检验的实现,并将其应用于使用 Engle-Granger 方法进行协整检验。
preview
周期与外汇

周期与外汇

周期在我们的生活中具有极其重要的意义。昼夜交替、四季更迭、一周的七天以及许多其他不同性质的周期都存在于每个人的生活中。在本文中,我们将探究金融市场中的周期。
preview
种群优化算法:引力搜索算法(GSA)

种群优化算法:引力搜索算法(GSA)

GSA 是一种受无生命自然启发的种群优化算法。 万幸在算法中实现了牛顿的万有引力定律,对物理物体相互作用进行建模的高可靠性令我们能够观察到行星系统和星系团的迷人舞蹈。 在本文中,我将研究最有趣和最原始的优化算法之一。 还提供了空间物体运动的模拟器。
preview
时间序列分类问题中的因果推理

时间序列分类问题中的因果推理

在本文中,我们将研究使用机器学习的因果推理理论,以及 Python 中的自定义方法实现。因果推理和因果思维植根于哲学和心理学,在我们理解现实中起着重要作用。
preview
基于隐马尔可夫模型的趋势跟踪波动率预测

基于隐马尔可夫模型的趋势跟踪波动率预测

隐马尔可夫模型(HMMs)是强大的统计工具,可通过分析可观测的价格波动来识别潜在的市场状态。在交易领域,隐马尔可夫模型通过建模和预测市场状态的转变,可提升波动率预测的准确性,并为趋势跟踪策略提供依据。在本文中,我们将完整介绍一种趋势跟踪策略的开发流程,该策略利用隐马尔可夫模型预测波动率,并将其作为交易信号的过滤条件。
preview
神经网络变得轻松(第十六部分):聚类运用实践

神经网络变得轻松(第十六部分):聚类运用实践

在上一篇文章中,我们为数据聚类创建了一个类。 在本文中,我想分享在解决实际交易任务时应用所获结果会遇到的可能变体。
preview
开发回放系统 — 市场模拟(第 08 部分):锁定指标

开发回放系统 — 市场模拟(第 08 部分):锁定指标

在本文中,我们将亲眼见证如何在简单地利用 MQL5 语言锁定指标,我们将以一种非常有趣和迷人的方式做到这一点。
preview
使用 MetaTrader 5 的 Python 高频套利交易系统

使用 MetaTrader 5 的 Python 高频套利交易系统

在本文中,我们将创建一个在经纪商眼中仍然合法的套利系统,在外汇市场上创建数千个合成价格,对其进行分析,并成功交易以获取利润。
preview
MQL5 中的范畴论 (第 2 部分)

MQL5 中的范畴论 (第 2 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。
preview
MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
使用MQL5和Python集成经纪商API与智能交易系统

使用MQL5和Python集成经纪商API与智能交易系统

在本文中,我们将探讨如何将MQL5与Python相结合,以执行与经纪商相关的操作。想象一下,您有一个持续运行的智能交易系统(EA),它托管在虚拟专用服务器(VPS)上,并代表您执行交易。在某个阶段,EA 管理资金的能力变得至关重要。这包括为您的交易账户入金和发起出金等操作。在本文中,我们将阐明这些功能的优势和具体实现方法,从而确保将资金管理无缝地集成到您的交易策略中。敬请关注!
preview
衡量指标信息

衡量指标信息

机器学习已成为策略制定的流行方法。 虽然人们更强调最大化盈利能力和预测准确性,但处理用于构建预测模型的数据的重要性,仍未受到太多关注。 在本文中,我们研究依据熵的概念来评估预测模型构建的指标的适配性,如 Timothy Masters 的《测试和优调市场交易系统》一书中所述。
preview
彗星尾算法(CTA)

彗星尾算法(CTA)

在这篇文章中,我们将探讨彗星尾优化算法(CTA),该算法从独特的太空物体——彗星及其接近太阳时形成的壮观尾部中汲取灵感。该算法基于彗星及其尾部运动的概念设计而成,旨在寻找优化问题中的最优解。
preview
使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

机器学习模型带有各种可调节的参数。在本系列文章中,我们将探讨如何使用SciPy库来定制您的AI模型,使其适应特定的市场。
preview
离散哈特莱变换

离散哈特莱变换

在本文中,我们将探讨频谱分析和信号处理的方法之一——离散哈特莱变换(discrete Hartley transform,DHT)。它可以过滤信号,分析它们的频谱等等。DHT的性能不亚于离散傅立叶变换(discrete Fourier transform,DFT)。然而,与DFT不同的是,DHT只使用实数,这使得它在实践中更方便实现,并且它的应用结果更直观。
preview
开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

开发回放系统 — 市场模拟(第 07 部分):首次改进(II)

在上一篇文章中,我们针对复现系统进行了一些修复并加入了测试,以确保可能的最佳稳定性。 我们还着手为这个系统创建和使用配置文件。
preview
MQL5 中的范畴论 (第 2 部分)

MQL5 中的范畴论 (第 2 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
交易中的混沌理论(第二部分):深入探索

交易中的混沌理论(第二部分):深入探索

我们继续深入探讨金融市场的混沌理论,这一次我将考虑其对货币和其他资产分析的适用性。
preview
价格行为分析工具箱开发(第三部分):分析大师 —EA

价格行为分析工具箱开发(第三部分):分析大师 —EA

从一个简单的交易脚本升级到一个功能完备的智能交易系统(EA),可以极大地提升您的交易体验。想象一下,拥有一个能够自动监控您的图表、在后台执行关键计算,并每隔两小时提供定期更新的系统。这款EA将配备分析关键指标的功能,而这些指标对于做出明智的交易决策至关重要,从而确保您能获取最新信息,以有效地调整您的交易策略。
preview
Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

在本文中,我们将用 Python 创建一个随机森林(random forest)模型,训练该模型,并将其保存为带有数据预处理功能的 ONNX 管道。之后,我们将在 MetaTrader 5 终端中使用该模型。
preview
种群优化算法:Boids(虚拟生物)算法

种群优化算法:Boids(虚拟生物)算法

本文基于动物集群行为的独特实例,说明Boids算法。反过来说,Boids算法又成为了一整类算法的基础,这类算法统称为“种群智能”。
preview
利用 Python 实现价格走势离散方法

利用 Python 实现价格走势离散方法

我们将考察使用 Python + MQL5 来离散价格的方法。在本文中,我将分享我开发 Python 函数库的实践经验,其以多种方式实现柱线形成 — 从经典的交易量和范围柱线,到更奇特的方法,如 Renko 和 Kagi。我们将研究三线突破蜡烛和范围柱线,分析它们的统计数据,并尝试定义如何将价格以离散化表示。
preview
量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

量化风险管理方法:应用 VaR 模型优化多货币投资组合(使用 Python 和 MetaTrader 5)

本文探讨了价值风险(VaR)模型在多货币投资组合优化中的潜力。借助 Python 的强大功能和 MetaTrader 5 的功能,我们展示了如何实施 VaR 分析,以实现高效的资金分配和头寸管理。从理论基础到实际实施,文章涵盖了将 VaR——这一最稳健的风险计算系统之一——应用于算法交易的方方面面。
preview
群体优化算法:差分进化(DE)

群体优化算法:差分进化(DE)

在本文中,我们将讨论在前面讨论过的所有算法中最有争议的算法 - 差分进化算法(Differential Evolution,DE)。
preview
开发回放系统 — 市场模拟(第 09 部分):自定义事件

开发回放系统 — 市场模拟(第 09 部分):自定义事件

在此,我们将见到自定义事件是如何被触发的,以及指标如何报告回放/模拟服务的状态。
preview
群体优化算法:螺旋动态优化 (SDO) 算法

群体优化算法:螺旋动态优化 (SDO) 算法

文章介绍了一种基于自然界螺旋轨迹构造模式(如软体动物贝壳)的优化算法 - 螺旋动力学优化算法(Spiral Dynamics Optimization,SDO)。我对作者提出的算法进行了彻底的修改和完善,本文将探讨这些修改的必要性。
preview
频域中的滤波和特征提取

频域中的滤波和特征提取

在本文中,我们探索了在时间序列由数字滤波器在频域上进行表达的应用,如此即可提取也许对预测模型有用的独特特征。
preview
矩阵实用工具,扩展矩阵和向量的标准库功能

矩阵实用工具,扩展矩阵和向量的标准库功能

矩阵作为机器学习算法和计算机的基础,因为它们能够有效地处理大型数学运算,标准库拥有所需的一切,但让我们看看如何在实用工具文件中引入若干个函数来扩展它,这些函数在标准库中尚未提供。
preview
数据科学和机器学习(第 16 部分):全新面貌的决策树

数据科学和机器学习(第 16 部分):全新面貌的决策树

在我们的数据科学和机器学习系列的最新一期中,深入到错综复杂的决策树世界。本文专为寻求策略洞察的交易者量身定制,全面回顾了决策树在分析市场趋势中所发挥的强大作用。探索这些算法树的根和分支,解锁它们的潜力,从而强化您的交易决策。加入我们,以全新的视角审视决策树,并探索它们如何在复杂的金融市场航行中成为您的盟友。
preview
DoEasy 函数库中的时间序列(第五十三部分):抽象基准指标类

DoEasy 函数库中的时间序列(第五十三部分):抽象基准指标类

本文研究创建一个抽象指标,其将进一步用作创建函数库标准指标和自定义指标对象的基类。
preview
群体优化算法:混合蛙跳算法(SFL)

群体优化算法:混合蛙跳算法(SFL)

本文详细描述了混合蛙跳(Shuffled Frog-Leaping,SFL)算法及其在求解优化问题中的能力。SFL算法的灵感来源于青蛙在自然环境中的行为,为函数优化提供了一种新的方法。SFL算法是一种高效灵活的工具,能够处理各种数据类型并实现最佳解决方案。
preview
价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

价格行为分析工具包开发(第12部分):外部资金流(3)趋势图谱(TrendMap)

市场走势由多头与空头之间的力量博弈所决定。由于作用在这些水平上的力量,市场会尊重某些特定价位水平。斐波那契(Fibonacci)水平和成交量加权平均价(VWAP)水平在影响市场行为方面尤为强大。请随我一同探讨本文中基于VWAP和斐波那契水平生成交易信号的策略。