交易中的神经网络:降低锐度强化变换器效率(终章)
SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习
强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)
本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。
交易中的神经网络:优化时间序列预测变换器(LSEAttention)
LSEAttention 框架改进变换器架构。它是专为长期多变量时间序列预测而设计。该方法作者提议的方法能应用于解决雏形变换器经常遇到的熵坍缩、及学习不稳定问题。
您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心
高斯(Gaussian)进程核心是正态分布的协方差函数,能够在预测中扮演角色。我们在 MQL5 的自定义信号类中探索这种独特的算法,看看它是否可当作主要入场和离场信号。
交易中的神经网络:场景感知物体检测(HyperDet3D)
我们邀请您来领略一种利用超网络检测物体的新方式。超网络针对主模型生成权重,允许参考具体的当前市场形势。这种方式令我们能够通过令模型适配不同的交易条件来提升预测准确性。
交易中的神经网络:探索局部数据结构
在嘈杂的条件下有效识别和预存市场数据的局部结构是交易中的一项关键任务。运用自注意力机制在处理这类数据方面展现出可喜的结果;不过,经典方式并未考虑底层结构的局部特征。在本文中,我将引入一种能够协同这些结构依赖关系的算法。
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法
本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)
在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习
时态差异是强化学习中的另一种算法,它基于智顾训练期间预测和实际奖励之间的差异更新 Q-值。它专门驻守更新 Q-值,而不介意它们的状态-动作配对。因此,我们考察如何在向导汇编的智能系统中应用这一点,正如我们在之前文章中所做的那样。
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型
本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新
本文通过实现实时新闻更新来增强我们的经济日历仪表盘,以保持市场信息的时效性和可操作性。我们在 MQL5 中集成了实时数据获取技术,以持续更新仪表盘上的事件,从而提升界面的响应速度。此更新优化确保我们可以直接从仪表盘获取最新的经济新闻,从而基于最新数据优化交易决策。
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习
软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。
Connexus观察者模式(第8部分):添加一个观察者请求
在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。
您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归
线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。
交易中的神经网络:降低锐度强化变换器效率(SAMformer)
训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
Connexus请求解析(第六部分):创建HTTP请求与响应
在Connexus库系列文章的第六篇中,我们将聚焦于完整的HTTP请求,涵盖构成请求的各个组件。我们将创建一个表示整个请求的类,这将有助于将之前创建的各个类整合在一起。
Connexus助手(第五部分):HTTP方法和状态码
在本文中,我们将了解HTTP方法和状态码,这是网络上客户端与服务器之间通信的两个非常重要的部分。了解每种方法的作用,可以让您更精确地发出请求,告知服务器您想要执行的操作,从而提高效率。
基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法
在本文中,我们将第二次尝试将任意市场的价格水平变化转化为对应的角度变化。此次,我们选择了比首次尝试更具数学复杂性的方法,而获得的结果表明,这一调整或许是正确的决策。今天,让我们共同探讨如何通过极坐标以有意义的方式计算价格水平变化所形成的角度,无论您分析的是何种市场。
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块
欢迎参与本次深度讨论,我们将揭示 MQL5 界面设计的最新进展,着重介绍重新设计的通信面板,并继续我们关于使用模块化原则构建新管理面板的系列文章。我们将逐步开发 CommunicationsDialog 类,并详细解释如何从 Dialog 类进行继承。此外,在我们的开发过程中,还将利用数组(arrays)和 ListView 类。获取可行的方案,以提升您的 MQL5 开发技能——请阅读本文,并在评论区加入讨论!
在MQL5中创建交易管理员面板(第十一部分):现代化功能通信接口(1)
今天,我们将聚焦于升级通信面板的消息交互界面,使其符合现代高性能通信应用的标准。这一改进将通过更新CommunicationsDialog类来实现。欢迎加入本文的探讨与讨论,我们将共同剖析关键要点,并规划使用MQL5推进界面编程的下一步方向。
MQL5交易策略自动化(第十七部分):借助动态仪表盘精通网格马丁格尔(Grid-Mart)短线交易策略
在本文中,我们将探讨网格马丁格尔(Grid-Mart)短线交易策略,并阐述如何在MQL5中实现该策略的自动化,同时配备一个动态仪表盘以提供实时交易分析。我们将详细介绍该策略基于网格的马丁格尔逻辑以及风险管理功能。此外,我们还将指导如何进行回测和部署,以确保策略的稳健表现。
使用 MetaTrader 5 Python 构建类似 MQL5 的交易类
MetaTrader 5 Python 包提供了一种使用 Python 语言为 MetaTrader 5 平台构建交易应用程序的简便方法。虽然它是一个强大而有用的工具,但在创建算法交易解决方案方面,该模块不如 MQL5 编程语言那么容易。在本文中,我们将构建类似于 MQL5 中提供的交易类,以创建类似的语法,使在 Python 中创建交易机器人比在 MQL5 中更容易。
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数
损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
从 MQL5 向 Discord 发送消息,创建 Discord-MetaTrader 5 机器人
与 Telegram 类似,Discord 可以使用其通信 API 以 JSON 格式接收信息和消息。在本文中,我们将探讨如何使用 Discord API 将 MetaTrader 5 的交易信号和更新发送到您的 Discord 交易社区。
MQL5交易策略自动化(第十六部分):基于结构突破(BoS)价格行为的午夜区间突破策略
本文将介绍如何在MQL5中实现午夜区间突破结合结构突破(BoS)价格行为策略自动化,并详细说明突破检测与交易执行的代码逻辑。我们为入场、止损和止盈设定了精确的风险参数。包含回测与优化方法,助力实战交易。
交易中的神经网络:基于 ResNeXt 模型的多任务学习
基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
MQL5 简介(第 16 部分):利用技术图表形态构建 EA 交易
本文向初学者介绍如何构建一个 MQL5 EA 交易,该系统可以识别和交易经典的技术图表形态 —— 头肩顶形态。它涵盖了如何利用价格行为来检测形态,如何在图表上绘制形态,如何设置入场点、止损点和止盈点,以及如何根据形态自动执行交易。
MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈
本文通过引入拖拽面板功能和悬停交互效果,对交易助手工具进行全面升级,使界面操作更直观且响应更迅速。我们优化了工具的实时订单验证机制,确保交易参数能根据市场价格动态校准。同时,我们通过回测验证了这些改进的可靠性。
利用 MQL5 经济日历进行交易(第 8 部分):通过智能事件过滤和有针对性的日志来优化新闻驱动策略的回测
在本文中,我们利用智能事件过滤和有针对性的日志来优化我们的经济日历,以便在实时和离线模式下实现更快、更清晰的回测。我们简化了事件处理程序,并将日志集中在关键交易和仪表盘事件上,从而增强了策略的可视化效果。这些改进使得对新闻驱动型交易策略进行顺畅的测试和优化成为可能。
开发多币种 EA 交易(第 23 部分):整理自动项目优化阶段的输送机(二)
我们的目标是创建一个系统,用于自动定期优化最终 EA 中使用的交易策略。随着系统的发展,它变得越来越复杂,因此有必要不时地将其视为一个整体,以确定瓶颈和次优解决方案。
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)
我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面
本文探讨了动态 MQL5 图形界面,利用双三次插值技术在交易图表上实现高质量的图像缩放。我们详细介绍了灵活的定位选项,支持通过自定义偏移量实现动态居中或位置定位。
交易中的神经网络:层次化双塔变换器(终篇)
我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
交易中的神经网络:配备概念强化的多智代系统(FinCon)
我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。