使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型
本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新
本文通过实现实时新闻更新来增强我们的经济日历仪表盘,以保持市场信息的时效性和可操作性。我们在 MQL5 中集成了实时数据获取技术,以持续更新仪表盘上的事件,从而提升界面的响应速度。此更新优化确保我们可以直接从仪表盘获取最新的经济新闻,从而基于最新数据优化交易决策。
交易中的神经网络:降低锐度强化变换器效率(SAMformer)
训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
Connexus助手(第五部分):HTTP方法和状态码
在本文中,我们将了解HTTP方法和状态码,这是网络上客户端与服务器之间通信的两个非常重要的部分。了解每种方法的作用,可以让您更精确地发出请求,告知服务器您想要执行的操作,从而提高效率。
让手动回测变得简单:为MQL5策略测试器构建自定义工具包
在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
Connexus请求解析(第六部分):创建HTTP请求与响应
在Connexus库系列文章的第六篇中,我们将聚焦于完整的HTTP请求,涵盖构成请求的各个组件。我们将创建一个表示整个请求的类,这将有助于将之前创建的各个类整合在一起。
基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法
在本文中,我们将第二次尝试将任意市场的价格水平变化转化为对应的角度变化。此次,我们选择了比首次尝试更具数学复杂性的方法,而获得的结果表明,这一调整或许是正确的决策。今天,让我们共同探讨如何通过极坐标以有意义的方式计算价格水平变化所形成的角度,无论您分析的是何种市场。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇
我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数
损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习
软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。
探索达瓦斯箱体突破策略中的高级机器学习技术
达瓦斯箱体突破策略由尼古拉斯·达瓦斯(Nicolas Darvas)提出,是一种技术交易方法:当股价突破预设的"箱体"区间上沿时,视为潜在买入信号,表明强劲的上升动能。本文将以该策略为例,探讨三种高级机器学习技术的应用。其中包括:利用机器学习模型直接生成交易信号(而非仅过滤交易);采用连续型信号(而非离散型信号);使用基于不同时间框架训练的模型进行交易验证。
在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块
欢迎参与本次深度讨论,我们将揭示 MQL5 界面设计的最新进展,着重介绍重新设计的通信面板,并继续我们关于使用模块化原则构建新管理面板的系列文章。我们将逐步开发 CommunicationsDialog 类,并详细解释如何从 Dialog 类进行继承。此外,在我们的开发过程中,还将利用数组(arrays)和 ListView 类。获取可行的方案,以提升您的 MQL5 开发技能——请阅读本文,并在评论区加入讨论!
交易中的神经网络:具有层化记忆的智代(终篇)
我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
风险管理(第二部分):在图形界面中实现手数计算
在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
将人工智能(AI)模型集成到已有的MQL5交易策略中
本主题聚焦于将训练好的人工智能(AI)模型(如长短期记忆网络(LSTM)等强化学习模型,或基于机器学习的预测模型)集成到现有的MQL5交易策略中。