有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
神经网络变得简单(第 86 部分):U-形变换器

神经网络变得简单(第 86 部分):U-形变换器

我们继续研究时间序列预测算法。在本文中,我们将讨论另一种方法:U-形变换器。
preview
在MQL5中实现基于经济日历新闻事件的突破型智能交易系统(EA)

在MQL5中实现基于经济日历新闻事件的突破型智能交易系统(EA)

重大经济数据发布前后市场波动率通常显著上升,为突破交易策略提供了理想的环境。在本文中,我们将阐述基于经济日历的突破策略的实现过程。我们将全面覆盖从创建用于解析和存储日历数据的类,到利用这些数据开发符合实际的回测系统,最终实现实盘交易执行代码的完整流程。
preview
您应当知道的 MQL5 向导技术(第 23 部分):CNNs

您应当知道的 MQL5 向导技术(第 23 部分):CNNs

卷积神经网络是另一种机器学习算法,倾向于专门将多维数据集分解为关键组成部分。我们看看典型情况下这是如何达成的,并探索为交易者在其它 MQL5 向导信号类中的可能应用。
preview
您应当知道的 MQL5 向导技术(第 48 部分):比尔·威廉姆斯(Bill Williams)短吻鳄

您应当知道的 MQL5 向导技术(第 48 部分):比尔·威廉姆斯(Bill Williams)短吻鳄

短吻鳄指标是比尔·威廉姆斯(Bill Williams)的创意,是一种多功能趋势识别指标,可产生清晰的信号,并经常与其它指标结合使用。MQL5 向导类和汇编允许我们在形态基础上测试各种信号,故此我们也研究了这个指标。
preview
风险管理(第一部分):建立风险管理类的基础知识

风险管理(第一部分):建立风险管理类的基础知识

在本文中,我们将介绍交易风险管理的基础知识,并学习如何创建第一个函数来计算交易的适当手数以及止损。此外,我们将详细介绍这些功能的工作原理,解释每个步骤。我们的目标是清楚地了解如何在自动交易中应用这些概念。最后,我们将通过创建一个包含文件的简单脚本来将所有内容付诸实践。
preview
交易中的神经网络:通过Adam-mini优化减少内存消耗

交易中的神经网络:通过Adam-mini优化减少内存消耗

提高模型训练和收敛效率的一个方向是改进优化方法。Adam-mini是一种自适应优化方法,旨在改进基础的Adam算法。
preview
交易中的神经网络:受控分段

交易中的神经网络:受控分段

在本文中。我们将讨论一种复杂的多模态交互分析和特征理解的方法。
preview
您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

受限玻尔兹曼(Boltzmann)机是一种神经网络形式,开发于 1980 年代中叶,当时的计算资源非常昂贵。在其初创时,它依赖于 Gibbs 采样,以及对比散度来降低维度,或捕获输入训练数据集上的隐藏概率/属性。我们验证当 RBM 为预测多层感知器“嵌入”价格时,反向传播如何执行类似的操作。
preview
您应当知道的 MQL5 向导技术(第 49 部分):搭配近端政策优化的强化学习

您应当知道的 MQL5 向导技术(第 49 部分):搭配近端政策优化的强化学习

近端政策优化是强化学习中的另一种算法,通常以网络形式以非常小的增量步幅更新政策,以便确保模型的稳定性。我们以向导汇编的智能系统来试验其作用,如同我们之前的文章一样。
preview
构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整

构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整

成功运用算法交易需要持续的跨学科学习。然而,无限的可能性可能会耗费数年努力,却无法取得切实成果。为解决这一问题,我们提出一个循序渐进增加复杂性的框架,让交易者能够迭代优化策略,而非将无限时间投入不确定的结果中。
preview
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。
preview
种群优化算法:人工多社区搜索对象(MSO)

种群优化算法:人工多社区搜索对象(MSO)

这是上一篇研究社群概念文章的延续。本文使用迁徙和记忆算法探讨社群的演化。结果将有助于理解社区系统的演化,并将其应用于优化和寻找解。
preview
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。
preview
在任何市场中获得优势(第三部分):Visa消费指数

在任何市场中获得优势(第三部分):Visa消费指数

在大数据的世界里,有数以百万计的备选数据集,它们有可能提升我们的交易策略。在这一系列文章中,我们将帮助您识别最有信息量的公开数据集。
preview
创建 MQL5-Telegram 集成 EA 交易(第 4 部分):模块化代码函数以增强可重用性

创建 MQL5-Telegram 集成 EA 交易(第 4 部分):模块化代码函数以增强可重用性

在本文中,我们将现有的用于从 MQL5 向 Telegram 发送消息和截图的代码重构为可重复使用的模块化函数。这将简化流程,实现跨多个实例的更高效执行和更轻松的代码管理。
preview
交易中的神经网络:受控分段(终章)

交易中的神经网络:受控分段(终章)

我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
preview
您应当知道的 MQL5 向导技术(第 50 部分):动量振荡器

您应当知道的 MQL5 向导技术(第 50 部分):动量振荡器

动量振荡器是另一个用于衡量动量的比尔·威廉姆斯(Bill Williams)指标。它能生成多个信号,因此我们像之前的文章一样,利用 MQL5 向导类和汇编,在形态基础上审查这些信号。
preview
让新闻交易轻松上手(第4部分):性能增强

让新闻交易轻松上手(第4部分):性能增强

本文将深入探讨改进EA在策略测试器中运行时间的方法,通过编写代码将新闻事件时间按小时分类。在指定的小时段内将访问这些新闻事件。这样确保了EA能够在高波动性和低波动性环境中高效管理事件驱动的交易。
preview
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。
preview
您应当知道的 MQL5 向导技术(第 52 部分):加速器振荡器

您应当知道的 MQL5 向导技术(第 52 部分):加速器振荡器

加速器振荡指标是另一款比尔·威廉姆斯(Bill Williams)指标,它跟踪价格动量的加速,而不光是其速度。尽管很像我们在最近的一篇文章中回顾的动量(Awesome)振荡器,但它更专注于加速度,而不仅是速度,来寻求避免滞后效应。我们一如既往地验证我们可从中获得哪些形态,以及每种形态由向导汇编到智能交易系统后,在交易中具有的意义。
preview
交易中的神经网络:免掩码注意力方式预测价格走势

交易中的神经网络:免掩码注意力方式预测价格走势

在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。
preview
交易中的神经网络:超点变换器(SPFormer)

交易中的神经网络:超点变换器(SPFormer)

在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
preview
使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器

使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器

在本文中,我们将在 MQL5 经济日历仪表板中添加过滤器,以便通过货币、重要性和时间来细化新闻事件的显示。我们首先为每个类别建立过滤标准,然后将这些标准集成到仪表板中,以仅显示相关事件。最后,我们确保每个过滤器都能动态更新,为交易者提供专注的、实时的经济信息。
preview
交易中的神经网络:降低锐度强化变换器效率(终章)

交易中的神经网络:降低锐度强化变换器效率(终章)

SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。
preview
智能系统健壮性测试

智能系统健壮性测试

在策略开发中,有许多错综复杂的细节需要考虑,对于初学交易者其中许多都未予重视。如是结果,众多交易者,包括我自己,都不得不历经苦难来学习这些教训。本文基于我观察到的大多数初学交易者在 MQL5 上开发策略时常见的陷阱。它将提供一系列提示、技巧、和示例,帮助辨别不合格的 EA,并以一种易于实现的方式来测试我们自己 EA 的稳健性。目标是教导读者,帮助他们未来购买 EA 时避免遭遇骗局,以及预防他们自己开发策略时的错误。
preview
让手动回测变得简单:为MQL5策略测试器构建自定义工具包

让手动回测变得简单:为MQL5策略测试器构建自定义工具包

在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
preview
创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析

在本文中,我们将探讨如何将 Telegram 命令与 MQL5 集成,以自动在交易图表上添加指标。我们涵盖了解析用户命令、在MQL5中执行命令以及测试系统以确保基于指标的交易顺利进行的过程
preview
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
交易中的神经网络:场景感知物体检测(HyperDet3D)

交易中的神经网络:场景感知物体检测(HyperDet3D)

我们邀请您来领略一种利用超网络检测物体的新方式。超网络针对主模型生成权重,允许参考具体的当前市场形势。这种方式令我们能够通过令模型适配不同的交易条件来提升预测准确性。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
交易中的神经网络:优化时间序列预测变换器(LSEAttention)

交易中的神经网络:优化时间序列预测变换器(LSEAttention)

LSEAttention 框架改进变换器架构。它是专为长期多变量时间序列预测而设计。该方法作者提议的方法能应用于解决雏形变换器经常遇到的熵坍缩、及学习不稳定问题。
preview
您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

高斯(Gaussian)进程核心是正态分布的协方差函数,能够在预测中扮演角色。我们在 MQL5 的自定义信号类中探索这种独特的算法,看看它是否可当作主要入场和离场信号。
preview
交易中的神经网络:层次化向量变换器(终章)

交易中的神经网络:层次化向量变换器(终章)

我们继续研究层次化向量变换器方法。在本文中,我们将完成模型的构造。我们还会在真实历史数据上对其进行训练和测试。
preview
交易中的神经网络:探索局部数据结构

交易中的神经网络:探索局部数据结构

在嘈杂的条件下有效识别和预存市场数据的局部结构是交易中的一项关键任务。运用自注意力机制在处理这类数据方面展现出可喜的结果;不过,经典方式并未考虑底层结构的局部特征。在本文中,我将引入一种能够协同这些结构依赖关系的算法。
preview
您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

时态差异是强化学习中的另一种算法,它基于智顾训练期间预测和实际奖励之间的差异更新 Q-值。它专门驻守更新 Q-值,而不介意它们的状态-动作配对。因此,我们考察如何在向导汇编的智能系统中应用这一点,正如我们在之前文章中所做的那样。
preview
Connexus观察者模式(第8部分):添加一个观察者请求

Connexus观察者模式(第8部分):添加一个观察者请求

在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。
preview
您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。
preview
交易中的神经网络:定向扩散模型(DDM)

交易中的神经网络:定向扩散模型(DDM)

在本文中,我们讨论定向扩散模型,其利用数据相关的各向异性、和定向噪声,在前向扩散过程中捕获有意义的图形表征。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。