

针对初学者以 MQL5 编写“EA 交易”的分步指南
使用 MQL5 的“EA 交易”编程很简单,您可以轻松学会。我们在本分步指南中向您指出了基于开发的交易策略编写简单的“EA 交易”所需的基本步骤。“EA 交易”的结构、内置技术指标和交易函数的使用、调试模式的详细内容以及策略测试程序的使用将在本文中一一论及。


如何从 MetaTrader 市场购买自动交易以及如何安装?
MetaTrader 市场的产品可以从 MQL5.com 网站购买,或者直接从 MetaTrader 4 和 MetaTrader 5 交易平台购买。选择一个想要的适合您交易风格的产品,使用您想要的支付方法付款,然后就能激活产品。


购买交易机器人前如何进行测试
与别处相比,在 MQL5 应用商店购买交易机器人有一个明显的优势 - 其提供的自动化系统,可直接在 MetaTrader 5 终端内接受完整测试。购买前,EA 交易可以、也应该在内置的策略测试程序中,以所有不利的模式谨慎运行,从而对此系统有一个全面的认识。


采用栈式 RBM 的深度神经网络。自训练, 自控制
本文是有关深度神经网络和预测器选择的前文之续篇。在此我们将涵盖由栈式 RBM 初始化的深度神经网络特性, 以及它在 "darch" 软件包里的实现。


根据支撑位、阻力位和和价格行为确定交易策略
本文阐述了如何参考价格行为以及监控支撑位和阻力位来选择合适的入场时机。详细描述了一个交易系统如何有效结合两种交易策略。相应的MQL4代码可用于实现基于这些交易理念的EA策略。


怎样购买一个基于MQL5或者MQL4的交易机器人
“自由职业者”是订购MQL4/MQL5交易机器人和技术指标的最大自由职业者服务。数以百计的专业开发人员已经准备好,为MetaTrader 4/5终端开发一个定制的交易应用程序。


第三代神经网络:深度网络
本文致力于介绍一种新的有前景的机器学习方向 — 深度学习或者更准确的说,深度神经网络。简要回顾第二代神经网络,它们的连结架构和主要类型,学习的方法和规则以及缺点,随后介绍第三代神经网络的发展,它们的主要类型,特点和学习方法。创建并训练一个深度神经网络,由真实数据通过堆栈式自动编码器权重进行初始化。从输入数据的选择到数量化求解的所有步骤都会详细讲述。文章的最后部分包含一个深度神经网络的EA实例,其中带有一个MQL4/R的内置指标。


海龟汤和海龟汤升级版的改进
本文介绍了来自琳达.布拉福德.瑞斯克(Linda Bradford Raschke)和劳伦斯.A.康纳斯(Laurence A. Connors)的《华尔街智慧:高胜算短线交易策略(Street Smarts: High Probability Short-Term Trading Strategies)》一书的两个交易策略,‘海龟汤’和‘海龟汤升级版’的原则规范。在书中描述的策略非常流行,但是有必要知道的是,作者是基于15年到20年的市场行为来开发它们的。


以马丁格尔(翻倍加仓)为基础的长线交易策略
在本文中,我们将深入研究马丁格尔(翻倍加仓)系统。 我们将评测该系统是否可以用于实盘交易,以及在运用它时如何将风险减至最小。 这一简单系统的主要缺点在于很可能会将全部存款亏损。 如果您决定使用马丁格尔技术进行交易,则必须考虑这一事实。


利用卡尔曼 (Kalman) 滤波器预测价格方向
为了成功交易, 我们几乎总是需要指标来把主要价格走势与噪音波动剥离。在本文中, 我们考察最有前途的数字滤波器之一, 卡尔曼滤波器。本文将介绍如何绘制和使用滤波器。


MQL5 初学者:EA 交易技术指标使用指南
为在EA 交易中获得内置或自定义指标的值,首先应使用相应函数创建指标的处理函数。本文中的示例说明了在创建自己的程序时如何使用技术指标。在本文中说明的指标使用 MQL5 语言构建。本文的目标受众是那些在交易策略开发上不具备太多经验的读者,并旨在通过使用提供的函数库提供简单明了的指标使用方式。


如何订购EA交易,并取得预期的结果
如何正确书写规格要求?当订购EA交易或指标时,什么是能从程序员那里期望得到的,什么是不能期望得到的?如何保持一个对话框,要特别注意什么时刻?本文给出这些以及其他许多对很多人来说并不那么显而易见的问题的答案。


创建一个人工交易助手
近来,货币市场上的交易机器人已经大幅增加,它们执行着各种各样的策略和概念,然而,它们还都没有能够成功创造人工智能双赢、多赢的实例,所以,很多交易者还是进行人工交易。但是,即使对于这样的专家,还是可以为他们创建被称为机器人助手的交易面板。本文就是从头开始创建交易面板的一个实例。


机器学习模型的变量评估和选择
本文重点介绍机器学习模型中输入变量(预测因子)的选择,预处理以及评估的相关细节。同时将探讨新的方法和预测因子深度分析及其对模型过度拟合可能的影响。模型的总体效果很大程度上取决于这一阶段的结果。我们将分析两个包,它们分别提供预测因子选择的新老方法。


MetaTrader 5 与 Python 的集成:接收和发送数据
全方位的数据处理需要大量工具,并且经常超出单一应用程序的功能沙箱。 专用编程语言正在用于处理和分析数据,统计和机器学习。 Python 是数据处理的主要编程语言之一。 本文介绍如何使用套接字连接 MetaTrader 5 和 Python,以及如何通过终端 API 接收报价。


深度神经网络 (第五部分)。 DNN 超参数的贝叶斯优化
本文研究利用贝叶斯优化深度神经网络 (DNN) 超参数,获取各种训练变体的可能性。 比较不同训练变体中最优超参数 DNN 的分类品质。 DNN 最优超参数的有效性的深度已在前瞻性测试中得以验证。 改善分类品质的可能方向也已确定。


用 MQL5 语言编写的 20 种交易信号
本文将向您传授如何接收交易系统工作所必需的交易信号。在这里作为单独的自定义函数提供了构成 20 个交易信号的例子,这些函数可以在开发 EA 交易程序时使用。为了您的方便,在本文中使用的所有函数都包含在一个能够轻松连接到将来的 EA 交易程序的 mqh 包含文件中。


MQL5 中的交易操作 - 很简单
几乎所有的交易者都是为了赚钱而进入市场,但也有一些交易者却是享受交易过程的本身。然而,并不是只有手动交易才能给您兴奋的体验。自动化交易系统开发也可以让您欲罢不能。创建一个交易机器人,可以像读一本出色的悬疑小说一样有趣。


EA交易的自我优化: 进化与遗传算法
本文涵盖的内容是提出了进化算法主要原则,以及它们的特点和多样性。我们将使用一个简单的EA交易作为实例来做实验,来展示如何通过优化使我们的交易系统获益,我们将探讨在软件程序中实现遗传、进化以及其它类型的优化,并且在优化交易系统的预测器集合与参数时提供示例程序。


跨平台的EA交易: 信号
本文讨论了 CSignal 和 CSignals 类,它们将用于创建跨平台的EA交易。它检验了MQL4和MQL5的区别,看它们在评估交易信号时需要怎样特别的数据,这样来确保写出的代码可以兼容两种编译器。


神经网络: 智能交易系统自我优化
是否有可能开发一款能够根据代码命令, 定期优化开仓和平仓条件的智能交易系统?如果我们以模块化的形式实现一个神经网络 (多层感知器) 来分析历史并提供策略, 会发生什么?我们可以做到 EA 每月(每周, 每天或每小时) 进行神经网络优化, 然后继续其工作。因此, 我们可以开发一款自我优化 EA。


神经网络:从理论到实践
现在,每一位交易者肯定听说过神经网络并知道使用它们有多酷。大多数人相信那些能够使用神经网络的人是某种超人。在本文中,我将尝试向您解释神经网络架构,描述其应用并提供几个实践例子。


以横盘和趋势行情为例强化策略测试器的指标优化
检测行情是否处于横盘对于许多策略来说是至关必要的。我们使用高知名度的 ADX 来展示如何利用策略测试器, 不但可以根据我们的特殊目的来优化指标, 而且我们也能判断指标是否符合我们的需要, 得到横盘和趋势行情的均值, 这对于判断行情的止损和目标是十分重要的。


如何创建自己的追踪止损
交易人员的基本原则 - 让利润增长,截停损失!本文讨论遵循该原则的其中的一个基本技巧 - 在增加持仓利润后移动保护性止损水平(止损水平),追踪止损水平。我们将给出用于在SAR和NRTR指标上追踪止损的类的分步创建过程。每个人都可以将该追踪止损插入他们的EA交易,或是在帐户中单独使用以控制持仓。


以MQL5 编写的EA 交易程序的测试与优化指南
本文解释识别和解决代码错误的步进式过程以及EA交易程序输入参数的测试与优化的步骤。您将了解如何使用 MetaTrader 5 客户端的策略测试程序为您的 EA 交易程序寻找最佳交易品种和一组输入参数。