有关 MQL5 编程和自动交易使用的文章

icon

创建用于 MetaTrader 平台的 EA,执行各种开发者已经实现的功能。交易机器人可以每天 24 小时跟踪金融产品,复制交易,创建和发送报告,分析新闻,甚至提供特定的自定义图形界面。

这些文章描述了编程技术,进行数据处理的数学思想,创建和订购交易机器人的技巧。

添加一个新的文章
最近 | 最佳
preview
交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

我们邀请您来探索 FinAgent,一个多模态金融交易智代框架,设计用来分析反映市场动态和历史交易形态的各种数据。
preview
数据科学和机器学习(第 26 部分):时间序列预测的终极之战 — LSTM 对比 GRU 神经网络

数据科学和机器学习(第 26 部分):时间序列预测的终极之战 — LSTM 对比 GRU 神经网络

在上一篇文章中,我们讨论了一个简单的 RNN,尽管它对理解数据中的长期依赖关系无能为力,却仍能制定可盈利策略。在本文中,我们将讨论长-短期记忆(LSTM)、门控递归单元(GRU)。引入这两个是为了克服简单 RNN 的缺点,并令其更聪慧。
preview
学习如何基于 DeMarker 设计交易系统

学习如何基于 DeMarker 设计交易系统

此为我们系列中的一篇新文章,介绍如何基于最流行的技术指标设计交易系统。 在本文中,我们将介绍如何基于 DeMarker 指标创建交易系统。
preview
算法交易中的风险管理器

算法交易中的风险管理器

本文的目标是证明在算法交易中使用风险管理器的必要性,并在一个单独的类中实现控制风险的策略,以便每个人都可以验证标准化的风险管理方法在金融市场日内交易和投资中的有效性。在本文中,我们将为算法交易创建一个风险管理类。本文是上一篇文章的延续,在前文中我们讨论了为手动交易创建风险管理器。
preview
在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在本文中,我们将自动化 MQL5 中的头肩形态。我们分析其架构,实现一个用于检测和交易该形态的 EA,并对结果进行回测。这个过程揭示了一个具有改进空间的实用交易算法。
preview
基于预测的统计套利

基于预测的统计套利

我们将探讨统计套利,使用Python搜索具有相关性和协整性的交易品种,为皮尔逊(Pearson)系数制作一个指标,并编制一个用于交易统计套利的EA,该系统将使用Python和ONNX模型进行预测。
preview
开发多币种 EA 交易(第 9 部分):收集单一交易策略实例的优化结果

开发多币种 EA 交易(第 9 部分):收集单一交易策略实例的优化结果

让我们来概述一下 EA 开发的主要阶段。首先要做的一件事就是优化所开发交易策略的单个实例。让我们试着在一个地方收集优化过程中测试器通过的所有必要信息。
preview
MQL5 简介(第 5 部分):MQL5 数组函数入门指南

MQL5 简介(第 5 部分):MQL5 数组函数入门指南

在第 5 部分中探索 MQL5 数组的世界,该部分专为绝对初学者设计。本文简化了复杂的编码概念,重点在于清晰性和包容性。加入我们的学习者社区,在这里解决问题,分享知识!
preview
暴力方式搜素形态(第 V 部分):全新视角

暴力方式搜素形态(第 V 部分):全新视角

在这篇文章中,我将展示一种完全不同的方式进行算法交易,我经历了很长一段时间后才最终遇到它。当然,这一切所作所为全靠我的暴力程序,其经历了许多更改,令其能够并发解决若干问题。尽管如此,这篇文章明面上仍然比较笼统和尽可能简单,这就是为什么它也适合那些对暴力一无所知的人。
preview
为 MetaTrader 5 开发一款 MQTT 客户端:TDD 方式

为 MetaTrader 5 开发一款 MQTT 客户端:TDD 方式

本文汇报为 MQL5 开发原生 MQTT 客户端的首次尝试。MQTT 是一种客户端-服务器之间发布/订阅消息的传输协议。它轻巧、开放、简单,并且易于实施。这些特性令其非常适合在多种情况下使用。
preview
您应该知道的 MQL5 向导技术(第 02 部分):Kohonen 映射

您应该知道的 MQL5 向导技术(第 02 部分):Kohonen 映射

这些系列文章所提议的是,MQL5 向导应作为交易员的支柱。 为什么呢? 因为交易员不仅可以利用 MQL5 向导装配他的新想法来节省时间,还可以大大减少重复编码带来的错误;他最终可把精力投向自我交易哲学中的几个关键领域。
preview
在MQL5中开发马丁格尔(Martingale)区域恢复策略

在MQL5中开发马丁格尔(Martingale)区域恢复策略

本文详细探讨了创建基于区域恢复交易算法的EA需要实施的步骤。这有助于自动化该系统,从而为算法交易者节省时间。
preview
重构经典策略:原油

重构经典策略:原油

在本文中,我们重新审视一种经典的原油交易策略,旨在通过利用监督机器学习算法来对其进行优化。我们将构建一个最小二乘模型,该模型基于布伦特原油(Brent)和西德克萨斯中质原油(WTI)之间的价差来预测未来布伦特原油价格。我们的目标是找到一个能够预测布伦特原油未来价格变化的领先指标。
preview
创建一个基于布林带PIRANHA策略的MQL5 EA

创建一个基于布林带PIRANHA策略的MQL5 EA

在本文中,我们将创建一个MQL5 EA,它基于PIRANHA策略,并使用布林带来提升交易表现。我们会系统梳理该策略的核心原理、代码实现细节,以及测试与优化方法。并助您轻松将 EA 部署到实际的交易环境中。
preview
神经网络变得轻松(第三十七部分):分散关注度

神经网络变得轻松(第三十七部分):分散关注度

在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
preview
通过应用程序了解MQL5中的函数

通过应用程序了解MQL5中的函数

函数在任何编程语言中都是至关重要的东西,它有助于开发人员应用(DRY)的概念,这意味着不要重复自己,还有许多其他好处。在本文中,您将找到更多关于函数的信息,以及我们如何使用简单的应用程序在MQL5中创建自己的函数,这些应用程序可以在任何系统中使用或调用。您必须在不使事情复杂化的情况下丰富您的交易系统。
preview
构建K线图趋势约束模型(第8部分):EA的开发(一)

构建K线图趋势约束模型(第8部分):EA的开发(一)

在本文中,我们将基于前文创建的指标,开发我们的第一个由MQL5语言编写的EA。我们将涵盖实现自动化交易所需的所有功能,包括风险管理。这将极大地帮助用户从手动交易转变为自动化交易系统。
preview
神经网络变得简单(第 66 部分):离线学习中的探索问题

神经网络变得简单(第 66 部分):离线学习中的探索问题

使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。
preview
开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)

开发多币种 EA 交易 (第 11 部分):自动化优化(第一步)

为了获得一个好的 EA,我们需要为它选择多组好的交易策略实例参数。这可以通过对不同的交易品种运行优化然后选择最佳结果来手动完成。但最好将这项工作委托给程序,并从事更有成效的活动。
preview
构建K线趋势约束模型(第九部分):多策略EA(2)

构建K线趋势约束模型(第九部分):多策略EA(2)

理论上,可以集成至EA中的策略数量没有上限。然而,每新增一种策略都会提升算法复杂度。通过融合多策略架构,EA能够更灵活地适应不同市场环境,从而可能提升整体盈利能力。今天,我们将探讨如何通过MQL5实现理查德·唐奇安(Richard Donchian)的经典通道突破策略,以此进一步拓展我们的趋势约束型EA功能体系。
preview
如何将聪明资金概念(SMC)与 RSI 指标结合到 EA 中

如何将聪明资金概念(SMC)与 RSI 指标结合到 EA 中

聪明资金概念(结构突破)与 RSI 指标相结合,可根据市场结构做出明智的自动交易决策。
preview
在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统

在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统

在本文中,我们将在MQL5中创建一个基于RSI区域反转策略的EA系统,该系统使用RSI信号来触发交易,并采用反转策略来管理亏损。我们实现了一个“ZoneRecovery”类,用以自动化交易入场、反转逻辑和仓位管理。文章最后将进行系统的回测,以优化性能并提升 EA 的有效性。
preview
神经网络变得轻松(第十六部分):聚类运用实践

神经网络变得轻松(第十六部分):聚类运用实践

在上一篇文章中,我们为数据聚类创建了一个类。 在本文中,我想分享在解决实际交易任务时应用所获结果会遇到的可能变体。
preview
在 MQL5 中创建做市商算法

在 MQL5 中创建做市商算法

做市商是如何运作的?让我们探讨一下这个问题,创建一个初级的做市商算法。
preview
MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)

MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)

在本文中,我们将在MQL5中开发一款适用于亚洲盘突破策略的智能交易系统(EA),用来计算亚洲时段的高低价以及使用移动平均线(MA)进行趋势过滤。同时实现动态对象样式、用户自定义时间输入和完善的风险管理。最后演示回测与优化技术,进一步打磨策略表现。
preview
交易中的神经网络:基于双注意力的趋势预测模型

交易中的神经网络:基于双注意力的趋势预测模型

我们继续讨论时间序列的分段线性表示的运用,这在前一篇文章中已经开始。今天,我们要看看如何将该方法与其它时间序列分析方法相结合,从而提高价格趋势预测品质。
preview
MQL5 中的高级变量和数据类型

MQL5 中的高级变量和数据类型

不仅在 MQL5 编程中,在任何编程语言中,变量和数据类型都是非常重要的主题。MQL5 变量和数据类型可分为简单类型和高级类型。在这篇文章中,我们将识别并学习高级类型,因为我们在前一篇文章中已经提到过简单类型。
preview
神经网络变得简单(第 92 部分):频域和时域中的自适应预测

神经网络变得简单(第 92 部分):频域和时域中的自适应预测

FreDF 方法的作者通过实验证实了结合频域和时域进行预测的优势。不过,权重超参数的使用对于非稳态时间序列并非最优。在本文中,我们将领略结合频域和时域预测的自适应方法。
preview
神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究

神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究

无论何时我们研究强化学习方法时,我们都会面对有效探索环境的问题。解决这个问题通常会导致算法更复杂性,以及训练额外模型。在本文中,我们将看看解决此问题的替代方法。
preview
神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正

神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正

由于模型是基于经验复现缓冲区进行训练,故当前的扮演者政策会越来越远离存储的样本,这会降低整个模型的训练效率。在本文中,我们将查看一些能在强化学习算法中提升样本使用效率的算法。
preview
风险管理(第二部分):在图形界面中实现手数计算

风险管理(第二部分):在图形界面中实现手数计算

在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
preview
神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)

神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)

到目前为止,我们研究过的所有模型在分析环境状态时都将其当作时间序列。不过,时间序列也能以频率特征的形式表示。在本文中,我将向您介绍一种算法,即利用时间序列的频率分量来预测未来状态。
preview
Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

Python、ONNX 和 MetaTrader 5:利用 RobustScaler 和 PolynomialFeatures 数据预处理创建 RandomForest 模型

在本文中,我们将用 Python 创建一个随机森林(random forest)模型,训练该模型,并将其保存为带有数据预处理功能的 ONNX 管道。之后,我们将在 MetaTrader 5 终端中使用该模型。
preview
构建K线图趋势约束模型(第一部分):针对EA和技术指标

构建K线图趋势约束模型(第一部分):针对EA和技术指标

本文面向初学者和专业的MQL5开发者。它提供了一段代码,用于定义并限制信号生成指标仅在较长的时间框架的趋势中运行。通过这种方式,交易者可以通过融入更广泛的市场视角来增强他们的策略,从而可能产生更稳健和可靠的交易信号。
preview
MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

MQL5交易策略自动化(第八部分):构建基于蝴蝶谐波形态的智能交易系统(EA)

在本文中,我们将构建一个MQL5智能交易系统(EA),用于检测蝴蝶谐波形态。我们会识别关键转折点,并验证斐波那契(Fibonacci)水平以确认该形态。之后,我们会在图表上可视化该形态,并在得到确认时自动执行交易。
preview
MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

本文将介绍一种结合MACD和RSI指标与统计方法的交易分层策略,通过MQL5实现动态自动化交易。我们将探讨这种级联式策略的架构设计,通过关键代码段详解其实现方式,并指导读者如何进行回测以优化策略表现。最后,我们将总结该策略的潜力,并为自动化交易的进一步优化奠定基础。
preview
您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

当经由向导组装一款智能系统时,默认情况下,跨多币种交易不可用。我们研究了 2 种可能采取的技巧,可令交易者在同一时间据多个品种测试他们的思路。
preview
MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
交易中的神经网络:状态空间模型

交易中的神经网络:状态空间模型

到目前为止,我们审阅的大量模型都是基于变换器架构。不过,在处理长序列时,它们或许效率低下。在本文中,我们将领略一种替代方向,即基于状态空间模型的时间序列预测。
preview
在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。