Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 2): Добавление отзывчивости кнопок

Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 2): Добавление отзывчивости кнопок

В этой статье мы преобразуем нашу статическую панель мониторинга MQL5 в интерактивный инструмент, добавив отзывчивость кнопок. Мы рассмотрим, как автоматизировать функционал компонентов графического интерфейса, гарантируя, что они будут правильно реагировать на нажатия пользователя. К концу статьи мы создадим динамический интерфейс, который повышает вовлеченность пользователей и удобство торговли.
preview
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)

Эта статья позволит вам увидеть, как Mamba4Cast превращает теорию в рабочий торговый алгоритм и подготовить почву для собственных экспериментов. Не упустите возможность получить полный спектр знаний и вдохновения для развития собственной стратегии.
preview
Пример CNA (сетевого анализа причинно-следственных связей), SMOC (оптимального управления стохастической моделью) и теории игр Нэша с Глубоким обучением

Пример CNA (сетевого анализа причинно-следственных связей), SMOC (оптимального управления стохастической моделью) и теории игр Нэша с Глубоким обучением

Мы добавим Глубокое обучение к тем трем примерам, которые были опубликованы в предыдущих статьях, и сравним результаты с предыдущими. Цель состоит в том, чтобы научиться каким образом добавлять Глубокое обучение (DL) в другие советники.
preview
Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Статья представляет инновационную гибридную систему для прогнозирования валютных курсов, которая сочетает линейную авторегрессионную модель с архитектурой U-Transformer для анализа остатков. Система автоматически переключается между источниками сигналов в зависимости от их качества и включает полноценную торговую логику с averaging/pyramiding стратегиями. Ключевое преимущество подхода заключается в том, что нейросеть обучается на остатках линейной модели, что упрощает задачу и снижает риск переобучения. Реализация выполнена полностью на MQL5 и готова к использованию в реальной торговле с автоматической адаптацией к изменяющимся рыночным условиям.
preview
Файловые операции в MQL5: От базового ввода-вывода до собственного CSV-ридера

Файловые операции в MQL5: От базового ввода-вывода до собственного CSV-ридера

В статье рассматриваются основные методы обработки файлов MQL5, ведение журналов торговли, обработка CSV-файлов и интеграция внешних данных. Статья содержит как теорию, так и практическое руководство по реализации. Читатели научатся шаг за шагом создавать собственный класс импортера CSV, получив практические навыки для реальных приложений.
preview
Создание торговой панели администратора на MQL5 (Часть III): Улучшение графического интерфейса пользователя (GUI) с помощью визуального оформления (I)

Создание торговой панели администратора на MQL5 (Часть III): Улучшение графического интерфейса пользователя (GUI) с помощью визуального оформления (I)

В настоящей статье мы сосредоточимся на визуальном оформлении графического интерфейса пользователя (GUI) нашей торговой панели администратора с использованием MQL5. Мы рассмотрим различные методы и функции, доступные в MQL5, которые позволяют настраивать и оптимизировать интерфейс, обеспечивая его соответствие потребностям трейдеров при сохранении привлекательной эстетики.
preview
Создание динамических графических интерфейсов на MQL5 через бикубическую интерполяцию

Создание динамических графических интерфейсов на MQL5 через бикубическую интерполяцию

В настоящей статье мы исследуем динамические графические интерфейсы MQL5, использующие бикубическую интерполяцию для высококачественного масштабирования изображений на торговых графиках. Мы подробно описываем гибкие варианты позиционирования, позволяющие выполнять динамическое центрирование или угловую привязку с настраиваемыми смещениями.
preview
Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Энкодер)

Нейросети в трейдинге: Вероятностное прогнозирование временных рядов (Энкодер)

Предлагаем познакомиться с новым подходом, который объединяет классические методы и современные нейросети для анализа временных рядов. В статье подробно раскрыта архитектура и принципы работы модели K²VAE.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Предлагаем познакомиться с продолжением реализации фреймворка SCNN, который сочетает в себе гибкость и интерпретируемость, позволяя точно выделять структурные компоненты временного ряда. В статье подробно раскрываются механизмы адаптивной нормализации и внимания, что обеспечивает устойчивость модели к изменяющимся рыночным условиям.
preview
Теория графов: Алгоритм Дейкстры в трейдинге

Теория графов: Алгоритм Дейкстры в трейдинге

Алгоритм Дейкстры — классическое решение по поиску кратчайшего пути в теории графов, которое позволяет оптимизировать торговые стратегии путем моделирования рыночных сетей. Трейдеры могут использовать его для поиска наиболее эффективных маршрутов в данных свечного графика.
preview
Передовые алгоритмы исполнения ордеров на MQL5: TWAP, VWAP и ордера Iceberg

Передовые алгоритмы исполнения ордеров на MQL5: TWAP, VWAP и ордера Iceberg

Фреймворк MQL5, предоставляющий розничным трейдерам алгоритмы исполнения институционального уровня (TWAP, VWAP, Iceberg) с помощью унифицированного менеджера исполнения и анализатора эффективности для более плавного и точного разделения ордеров и аналитики.
preview
Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Подробная информация о торговле на основе объема: Выход за рамки графиков OHLC

Алгоритмическая торговая система, сочетающая анализ объема с методами машинного обучения, в частности с нейронными сетями LSTM. В отличие от традиционных торговых подходов, которые в первую очередь фокусируются на движении цен, эта система делает упор на паттернах объема и их производных для прогнозирования движений рынка. Методология включает в себя три основных компонента: анализ производных от объема (первые и вторые производные), прогнозы LSTM для паттернов объема и традиционные технические индикаторы.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

В статье описана практическая реализация фреймворка HimNet на базе MQL5, который готов к интеграции в автоматическую торговлю. Мы показываем, как метапараметры, адаптированные под гетерогенность, превращают модель в универсальный инструмент, способный справляться с изменчивой волатильностью.
preview
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Продолжаем интеграцию методов, предложенных авторами фреймворка Attraos, в торговые модели. Напомню, что данный фреймворк использует концепции теории хаоса для решения задач прогнозирования временных рядов, интерпретируя их как проекции многомерных хаотических динамических систем.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

В данной статье мы начинаем знакомство с фреймворком SSCNN — современным архитектурным решением для анализа временных рядов, сочетающим в себе точность, структурированность и высокую вычислительную эффективность. Мы последовательно рассмотрим его теоретические аспекты, обратим внимание на ключевые отличия от предшественников и начнем практическую реализацию базовых компонентов в среде MQL5.
preview
Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)

Нейросети в трейдинге: Адаптивная периодическая сегментация (LightGTS)

Предлагаем познакомиться с инновационной техникой адаптивного патчинга — способа гибко сегментировать временные ряды с учётом их внутренней периодичности. А также с техникой эффективного кодирования, позволяющего сохранять важные семантические характеристики при работе с данными разного масштаба. Эти методы открывают новые возможности для точной обработки сложных многомасштабных данных, характерных для финансовых рынков, и существенно повышают стабильность и обоснованность прогнозов.
preview
Оптимизация и тонкая настройка исходного кода для улучшения результатов тестирования на истории

Оптимизация и тонкая настройка исходного кода для улучшения результатов тестирования на истории

Улучшите свой код MQL5, оптимизировав логику, улучшив вычисления и сократив время выполнения, чтобы повысить точность тестирования на истории. Проведите тонкую настройку параметров, оптимизацию циклов и устранение неэффективности для улучшения результата.
preview
Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Разработка инструментария для анализа движения цен (Часть 4): Советник Analytics Forecaster

Мы выходим за рамки простого просмотра проанализированных показателей на графиках и переходим к более широкой перспективе, которая включает интеграцию с Telegram. Это позволит отправлять важные результаты непосредственно на мобильное устройство через Telegram.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (I)

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (I)

Доступность новостей является критическим фактором при торговле в терминале MetaTrader 5. Несмотря на наличие множества новостных API, многие трейдеры сталкиваются с трудностями доступа к ним и их эффективной интеграции в свою торговую среду. В ходе настоящего обсуждения нашей целью является разработать оптимизированное решение, которое выводило бы новости непосредственно на график — там, где они больше всего нужны. Мы добьемся этого, создав советника «Заголовки новостей», который отслеживает и отображает обновления новостей в режиме реального времени из источников API.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Предлагаем познакомиться с алгоритмом разложения временного ряда на смысловые слои и построения из них экономной модели. Мы последовательно показываем архитектуру, практическую реализацию на MQL5/OpenCL и реальные тесты на исторических рыночных данных.
preview
Автоматизация торговых стратегий на MQL5 (Часть 17): Освоение стратегии скальпинга Grid-Mart с динамической информационной панелью

Автоматизация торговых стратегий на MQL5 (Часть 17): Освоение стратегии скальпинга Grid-Mart с динамической информационной панелью

В настоящей статье мы рассмотрим стратегию скальпинга Grid-Mart, автоматизировав ее на MQL5 с помощью динамической информационной панели для получения информации о торговле в режиме реального времени. Мы подробно описываем логику мартингейла на основе сетки, а также функции управления рисками. Мы также проводим тестирование на истории и развертывание для обеспечения надежной работы.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

В статье мы завершаем работу по построению фреймворка SAGDFN средствами MQL5, подводя итоги разработки и демонстрируя результаты его практического тестирования. Объединим реализованные ранее модули в единую систему^ покажем сильные стороны подхода, отметим его уязвимости и обсудим возможные пути доработки.
preview
Упрощаем торговлю на новостях (Часть 6): Совершаем сделки (III)

Упрощаем торговлю на новостях (Часть 6): Совершаем сделки (III)

В этой статье будет реализована сортировка новостей для отдельных новостных событий на основе их идентификаторов. Кроме того, предыдущие запросы SQL будут улучшены для предоставления дополнительной информации или сокращения времени выполнения запроса. Код, созданный в предыдущих статьях, станет работоспособным.
preview
Автоматизация торговых стратегий на MQL5 (Часть 15): Гармонический паттерн «Шифр» (Cypher) ценового действия с визуализацией

Автоматизация торговых стратегий на MQL5 (Часть 15): Гармонический паттерн «Шифр» (Cypher) ценового действия с визуализацией

В настоящей статье мы исследуем автоматизацию гармонического паттерна «Шифр» (Cypher) на MQL5, подробно описывая его обнаружение и визуализацию на графиках MetaTrader 5. Мы реализуем советник, который определяет точки колебания, проверяет паттерны на основе Фибоначчи и совершает сделки с четкими графическими аннотациями. Статья завершается рекомендациями по тестированию на истории и оптимизации программы для эффективной торговли.
preview
Создание пользовательской системы определения рыночного режима на языке MQL5 (Часть 2): Советник

Создание пользовательской системы определения рыночного режима на языке MQL5 (Часть 2): Советник

В этой статье подробно описано создание адаптивного экспертного советника (MarketRegimeEA) с помощью детектора режимов из Части 1. Он автоматически переключает торговые стратегии и параметры рисков для трендового, флэтового или волатильного рынков. Сюда включены практическая оптимизация, обработка переходов и индикатор для нескольких таймфреймов.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

В статье мы раскрываем архитектуру SAGDFN — современного фреймворка, способного преобразовать подход к обработке пространственно-временных данных. Он сохраняет ключевую информацию даже в сложных графах и при этом снижает вычислительные издержки.
preview
Автоматизация торговых стратегий на MQL5 (Часть 11): Разработка многоуровневой системы сеточной торговли

Автоматизация торговых стратегий на MQL5 (Часть 11): Разработка многоуровневой системы сеточной торговли

В настоящей статье мы разрабатываем советник многоуровневой системы сеточной торговли с использованием MQL5, уделяя особое внимание архитектуре и алгоритмам, лежащим в основе стратегий сеточной торговли. Мы изучим внедрение многоуровневой сетевой логики и методов управления рисками для работы в изменяющихся рыночных условиях. Наконец, приведём подробные объяснения и практические советы, которые помогут вам в создании, тестировании и совершенствовании автоматической торговой системы.
preview
Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Разработка инструментария для анализа движения цен (Часть 5): Советник Volatility Navigator

Определить направление рынка может быть просто, но вот понять, когда входить на рынок, - гораздо более сложная задача. В этой статье серии "Разработка инструментария для анализа движения цен" я представлю еще один инструмент, который определяет точки входа и уровни стоп-лосса/тейк-профита. Для достижения этой цели использовался язык программирования MQL5.
preview
Переосмысливаем классические стратегии (Часть IV): SP500 и казначейские облигации США

Переосмысливаем классические стратегии (Часть IV): SP500 и казначейские облигации США

В этой серии статей мы анализируем классические торговые стратегии с использованием современных алгоритмов, чтобы определить, можно ли улучшить стратегию с помощью искусственного интеллекта (ИИ). В сегодняшней статье мы рассмотрим классический подход к торговле индексом SP500, используя его взаимосвязь с казначейскими облигациями США (US Treasury Notes).
preview
Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Окончание)

Нейросети в трейдинге: Интеллектуальный конвейер прогнозов (Окончание)

Эта статья увлекательно покажет, как SwiGLU‑эмбеддинг раскрывает скрытые паттерны рынка, а разреженная смесь экспертов внутри Decoder‑Only Transformer делает прогнозы точнее при разумных вычислительных затратах. Мы подробно разбираем интеграцию Time‑MoE в MQL5 и OpenCL, шаг за шагом описываем настройку и обучение модели.
preview
Автоматизация торговых стратегий на MQL5 (Часть 3): система Zone Recovery RSI для динамического управления торговлей

Автоматизация торговых стратегий на MQL5 (Часть 3): система Zone Recovery RSI для динамического управления торговлей

В этой статье мы создадим систему Zone Recovery RSI EA на языке MQL5, используя сигналы RSI для запуска сделок и стратегию восстановления для управления убытками. Мы реализуем класс ZoneRecovery для автоматизации входа в сделку, логики восстановления и управления позициями. В заключение статьи приводятся результаты бэктестинга для оптимизации производительности и повышения эффективности советника.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (BAT)

В статье представлен фреймворк BAT, обеспечивающий точное и адаптивное моделирование временной динамики. Используя двустороннюю временную корреляцию, BAT превращает последовательные изменения рыночных данных в структурированные, информативные представления. Модель сочетает высокую вычислительную эффективность с возможностью глубокой интеграции в торговые системы, позволяя выявлять как краткосрочные, так и долгосрочные паттерны движения.
preview
Введение в MQL5 (Часть 11): Руководство для начинающих по работе со встроенными индикаторами в MQL5 (II)

Введение в MQL5 (Часть 11): Руководство для начинающих по работе со встроенными индикаторами в MQL5 (II)

В этой статье мы узнаем, как написать на MQL5 советника с использованием нескольких индикаторов, таких как RSI, MA и Stochastic Oscillator. Индикаторы будут искать скрытые бычьи и медвежьи расхождения. В статье представлены примеры и исходный код с подробными комментариями — изучайте их, чтобы узнать, как эффективно управлять рисками и автоматизировать торговлю.
preview
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (Основные компоненты)

Предлагаем познакомиться с новой реализацией ключевых компонентов Фреймворка GinAR — адаптивного алгоритма для работы с графовыми временными рядами. В статье шаг за шагом разобраны архитектура, алгоритмы прямого прохода и обратного распространения ошибки.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети уже меняют подход к анализу рынков, а новые архитектуры открывают ещё больше возможностей. В статье мы завершаем работу с фреймворком SpikingBrain, который отрывает перед нами новые перспективы.
preview
Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Нейросети в трейдинге: Пространственно-временная модель состояния для анализа финансовых данных (Окончание)

Представляем адаптацию фреймворк E-STMFlow — современное решение для построения автономных торговых систем. В статье завершаем реализацию подходов, предложенных авторами фреймворка. Результаты тестирования демонстрируют стабильный рост капитала, минимальные просадки и предсказуемое распределение рисков, подтверждая практическую эффективность подхода и открывая перспективы дальнейшей оптимизации стратегии.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Фреймворк Extralonger демонстрирует подход к интеграции пространственных и временных факторов в единую модель, что позволяет одновременно учитывать локальные закономерности и долгосрочные циклы. Такая архитектура делает прогнозирование временных рядов более устойчивым к рыночному шуму и открывает возможность анализа данных на разных горизонтах. В статье подробно рассматривается, как эти идеи воплощаются на практике средствами OpenCL и MQL5.
preview
Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

Нейросети в трейдинге: Двусторонняя адаптивная временная корреляция (Основные компоненты)

В этой статье мы продолжаем реализацию фреймворка BAT средствами MQL5, показывая, как двунаправленная корреляция и модуль SATMA позволяют анализировать динамику рынка в контексте текущего состояния. Представлены ключевые архитектурных решения, позволяющие адаптировать фреймворк к анализу финансовых данных.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (IV) - Анализ рынка локально размещенными моделями с использованием ИИ

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (IV) - Анализ рынка локально размещенными моделями с использованием ИИ

В сегодняшнем обсуждении мы рассмотрим, как самостоятельно размещать модели искусственного интеллекта с открытым исходным кодом и использовать их для получения информации о рынке. Это является частью наших постоянных усилий по расширению советника «Заголовки новостей» путем внедрения раздела «Анализ искусственного интеллекта» (AI Insights), который превращает советник в мультиинтеграционный вспомогательный инструмент. Обновленный советник предназначен для информирования трейдеров о событиях календаря, последних финансовых новостях, технических индикаторах, а теперь и о перспективах рынка, генерируемых искусственным интеллектом, тем самым, предлагая своевременную, разнообразную и интеллектуальную поддержку при принятии торговых решений. Присоединяйтесь к разговору, в ходе которого мы рассмотрим практические стратегии интеграции и то, как MQL5 может взаимодействовать с внешними ресурсами для создания мощного и интеллектуального торгового рабочего терминала.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Предлагаем познакомиться с инновационным фреймворком SCNN, который выводит анализ временных рядов на новый уровень за счёт чёткого разделения данных на долгосрочные, сезонные, краткосрочные и остаточные компоненты. Такой подход значительно повышает точность прогнозирования, позволяя модели адаптироваться к сложной и меняющейся рыночной динамике.