Статьи с примерами программирования торговых роботов на языке MQL5

icon

Эксперты являются вершиной программирования и желаемой целью каждого разработчика в автоматическом трейдинге. Написать собственного торгового робота вы сможете с помощью статей этого раздела. Новички шаг за шагом смогут пройти все этапы в создании, отладке и тестировании автоматических торговых систем.

Статьи научат вас не только программировать на языке MQL5, но и покажут как реализовать любые торговые идеи и техники. Вы узнаете, как написать трейлинг стоп, как реализовать управление капиталом, как получить значение индикатора и многое-многое другое.

Новая статья
последние | лучшие
preview
Знакомство с языком MQL5 (Часть 13): Руководство для начинающих по созданию пользовательских индикаторов (II)

Знакомство с языком MQL5 (Часть 13): Руководство для начинающих по созданию пользовательских индикаторов (II)

Эта статья проведет вас через создание пользовательского индикатора Heikin Ashi с нуля и продемонстрирует, как интегрировать пользовательские индикаторы в советник. В статье рассматриваются расчеты индикаторов, логика исполнения сделок и методы управления рисками для улучшения автоматизированных торговых стратегий.
preview
Создание торговой панели администратора на MQL5 (Часть VI): Панель управления торговлей (II)

Создание торговой панели администратора на MQL5 (Часть VI): Панель управления торговлей (II)

В этой статье мы улучшим панель управления торговлей нашей многофункциональной панели администратора. Мы представим мощную вспомогательную функцию, которая упрощает код, улучшая его читаемость, удобство обслуживания и эффективность. Мы также продемонстрируем, как легко интегрировать дополнительные кнопки и улучшить интерфейс для решения более широкого спектра торговых задач. Независимо от того, управляете ли вы позициями, корректируете ордера или упрощаете взаимодействие с пользователем, это руководство поможет вам разработать надежную и удобную панель управления торговлей.
preview
Управление рисками (Часть 5): Интегрируем систему управления рисками в советник

Управление рисками (Часть 5): Интегрируем систему управления рисками в советник

В этой статье мы реализуем систему управления рисками, разработанную в предыдущих публикациях, и добавим индикатор Order Blocks, представленный в других статьях. Кроме того, будет проведено тестирование на исторических данных (backtest), чтобы можно было сравнить результаты с применением системы управления рисками и оценить влияние динамического риска.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (X) — Представление графика с несколькими символами для торговли на новостях

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (X) — Представление графика с несколькими символами для торговли на новостях

Сегодня мы разработаем систему просмотра нескольких диаграмм с использованием объектов диаграмм. Цель состоит в том, чтобы улучшить торговлю на новостях за счет применения алгоритмов на MQL5, которые помогают сократить время реакции трейдера в периоды высокой волатильности, такие как выход крупных новостей. В этом случае мы предоставляем трейдерам интегрированный способ мониторинга нескольких основных инструментов в рамках единого инструмента для торговли на новостях. Наша работа постоянно продвигается с появлением советника News Headline EA («Заголовки новостей»), который теперь обладает растущим набором функций, которые привносят действительное значение как для трейдеров, использующих полностью автоматизированные системы, так и для тех, кто предпочитает ручную торговлю с помощью алгоритмов. Ознакомьтесь с новыми знаниями, информацией и практическими идеями, перейдя по ссылке и присоединившись к настоящему обсуждению.
preview
Нейросети в трейдинге: Агрегация движения по времени (TMA)

Нейросети в трейдинге: Агрегация движения по времени (TMA)

Фреймворк TMA открывает новый взгляд на рыночную динамику, позволяя моделям улавливать не только состояние рынка, но и само течение времени. Его способность извлекать закономерности из непрерывного потока данных делает анализ глубже и точнее, чем при классических подходах. А рекуррентная адаптация превращает этот метод в практичный инструмент для работы с реальными котировками.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (SEW-ResNet)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (SEW-ResNet)

Приглашаем к знакомству с фреймворком SEW-ResNet, который позволяет строить глубокие спайковые модели без проблем деградации и с эффективным управлением градиентами. В этой статье мы демонстрируем, как реализовать базовый спайковый нейрон и его алгоритмы средствами MQL5.
preview
От новичка до эксперта: Утилита для управления параметрами

От новичка до эксперта: Утилита для управления параметрами

Представьте, что вы преобразовали традиционные входные свойства советника или индикатора в интерфейс управления графиком в режиме реального времени. Это обсуждение основано на нашей фундаментальной работе над индикатором Market Period Synchronizer, что знаменует собой значительную эволюцию в том, как мы визуализируем рыночные структуры на старших таймфреймах (HTF) и управляем ими. Здесь мы превращаем эту концепцию в полностью интерактивную утилиту — информационная панель, которая обеспечивает динамический контроль и улучшенную многопериодную визуализацию ценового движения непосредственно на графике. Присоединяйтесь к нам, и мы узнаем, как это нововведение меняет способ взаимодействия трейдеров со своими инструментами.
preview
Нейросети в трейдинге: Агрегация движения по времени (Основные компоненты)

Нейросети в трейдинге: Агрегация движения по времени (Основные компоненты)

В этой статье теория встречается с практикой. Мы реализуем ключевые модули фреймворка TMA — MPE и MPA. Здесь данные обретают смысл, а кросс-внимание превращается в инструмент точного анализа рыночной динамики. Минимум избыточных операций, максимум эффективности — шаг к интеллектуальному трейдингу нового поколения.
preview
Трейдинг с экономическим календарем MQL5 (Часть 4): Обновление новостей в панели управления в реальном времени

Трейдинг с экономическим календарем MQL5 (Часть 4): Обновление новостей в панели управления в реальном времени

В этой статье мы расширим возможности нашей панели экономического календаря, внедрив обновления новостей в реальном времени для поддержания актуальности рыночной информации. Мы интегрируем методы извлечения данных в реальном времени в MQL5 для непрерывного обновления событий на панели управления и повышения отзывчивости интерфейса. Это обновление обеспечивает нам доступ к последним экономическим новостям непосредственно с панели управления, оптимизируя торговые решения на основе самых свежих данных.
preview
Автоматизация торговых стратегий на MQL5 (Часть 5): Разработка стратегии Adaptive Crossover RSI Trading Suite

Автоматизация торговых стратегий на MQL5 (Часть 5): Разработка стратегии Adaptive Crossover RSI Trading Suite

В этой статье мы разработаем систему Adaptive Crossover RSI Trading Suite, которая использует пересечения скользящих средних с периодами 14 и 50 в качестве сигналов, подтверждаемых фильтром RSI с периодом 14. Система включает в себя фильтр торговых дней, стрелки сигналов с пояснениями и дашборд для мониторинга в реальном времени. Такой подход обеспечивает точность и адаптивность автоматической торговли.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Основные компоненты)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Основные компоненты)

В данной статье представлен практический подход к адаптации современного фреймворка для анализа финансовых потоков средствами MQL5. Рассмотрены ключевые компоненты модели — Depth-Wise свёртки с остаточными связями, конусные Super Kernel Block и модуль глобальной агрегации движения (GMA).
preview
Автоматизация торговых стратегий на MQL5 (Часть 8): Создание советника с помощью гармонических паттернов Butterfly

Автоматизация торговых стратегий на MQL5 (Часть 8): Создание советника с помощью гармонических паттернов Butterfly

В настоящей статье мы создаём советника на MQL5 для определения гармонических паттернов Butterfly. Мы определяем точки разворота и проверяем уровни Фибоначчи для подтверждения паттерна. Затем визуализируем паттерн на графике и автоматически совершаем сделки при подтверждении.
preview
Разработка динамического советника на нескольких парах (Часть 2): Диверсификация и оптимизация портфеля

Разработка динамического советника на нескольких парах (Часть 2): Диверсификация и оптимизация портфеля

Диверсификация и оптимизация портфеля позволяют стратегически распределять инвестиции по нескольким активам, чтобы минимизировать риски, и при этом выбирать идеальную комбинацию активов для максимизации доходности на основе показателей эффективности с учетом риска.
preview
Трейдинг с экономическим календарем MQL5 (Часть 6): Автоматизация входа в сделку с анализом новостей и таймерами обратного отсчета

Трейдинг с экономическим календарем MQL5 (Часть 6): Автоматизация входа в сделку с анализом новостей и таймерами обратного отсчета

В этой статье мы реализуем автоматизированный вход в торговлю с использованием экономического календаря MQL5, применив настраиваемые фильтры и временные смещения для поиска новостей. Мы сравниваем прогнозные и предыдущие значения, чтобы определить, следует ли открывать сделку на покупку или продажу. Динамические таймеры обратного отсчета отображают оставшееся время до выхода новостей и автоматически сбрасываются после совершения сделки.
preview
Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Энкодер)

Нейросети в трейдинге: Возмущённые модели пространства состояний для анализа рыночной динамики (Энкодер)

В статье представлен практический подход к реализации модуля P-SSE для анализа потоков рыночных данных в реальном времени. Продуманное использование стека исторических состояний позволяет каждому срезу рынка обрабатываться лишь один раз, исключая дублирование вычислений и ускоряя онлайн-анализ. Представленные решения обеспечивают высокую точность, устойчивость модели и эффективность обработки, делая фреймворк мощным инструментом для анализа микроимпульсов на финансовых рынках.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Интеграция спайков)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Интеграция спайков)

В статье представлена практическая реализация ключевых компонентов фреймворка SEW-ResNet средствами MQL5. Использование динамических массивов и спайковых механизмов позволяет гибко строить архитектуру модели и эффективно обрабатывать финансовые временные ряды. Предложенные решения показывают, как SEW-ResNet может оптимизировать вычисления и улучшить выделение значимых признаков.
preview
Анализ настроений в Twitter с помощью сокетов

Анализ настроений в Twitter с помощью сокетов

Этот инновационный торговый бот интегрирует платформу MetaTrader 5 с языком Python в целях использования анализа настроений в социальных сетях в режиме реального времени для автоматизированного принятия торговых решений. Путем анализа настроений в Twitter, связанных с конкретными финансовыми инструментами, бот преобразует тенденции социальных сетей в действенные торговые сигналы. Он использует архитектуру «клиент-сервер» с сокетной связью, обеспечивая бесперебойное взаимодействие между торговыми возможностями MetaTrader 5 и вычислительной мощностью Python.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (II)

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (II)

Сегодня мы делаем еще один шаг вперед, интегрируя внешний новостной API в качестве источника заголовков для нашего советника «Заголовки новостей». На этом этапе мы изучим различные источники новостей — как существующие, так и новые — и узнаем, как эффективно использовать их API. Мы также рассмотрим методы парсинга полученных данных в формат, оптимизированный для отображения в нашем экспертном советнике. Присоединяйтесь к обсуждению, пока мы обсуждаем преимущества использования заголовков новостей и экономического календаря непосредственно на графике. И все это в компактном, ненавязчивом интерфейсе.
preview
Разработка динамического советника на нескольких парах (Часть 4): Корректировка риска на основе волатильности

Разработка динамического советника на нескольких парах (Часть 4): Корректировка риска на основе волатильности

На этом этапе мы настраиваем мультипарный советник так, чтобы адаптировать размер сделки и риск в реальном времени с помощью метрик волатильности, таких как ATR, что повышает согласованность, защиту и эффективность в различных рыночных условиях.
preview
Знакомство с языком MQL5 (Часть 27): Освоение API и функции WebRequest в языке MQL5

Знакомство с языком MQL5 (Часть 27): Освоение API и функции WebRequest в языке MQL5

В этой статье рассматривается, как использовать функцию WebRequest() и API в языке MQL5 для взаимодействия с внешними платформами. Вы узнаете, как создать Telegram-бота, получать идентификаторы чатов и групп, а также отправлять, редактировать и удалять сообщения непосредственно из MetaTrader 5, и тем самым заложите прочный фундамент для интеграции API в ваши будущие проекты на языке MQL5.
preview
Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (II): Модуляризация

Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (II): Модуляризация

В этом обсуждении мы сделаем шаг вперед в разбиении нашей программы MQL5 на более мелкие и более управляемые модули. Эти модульные компоненты затем будут интегрированы в основную программу, что улучшит ее организацию и удобство обслуживания. Такой подход упрощает структуру нашей основной программы и делает отдельные компоненты пригодными для повторного использования в других советниках и индикаторах. Приняв эту модульную конструкцию, мы создаем прочную основу для будущих улучшений, что принесет пользу как нашему проекту, так и широкому сообществу разработчиков.
preview
Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (Окончание)

Нейросети в трейдинге: Асинхронная обработка событий в потоковых моделях (Окончание)

В статье реализован событийный фреймворк EVA-Flow на MQL5 с объектом верхнего уровня CNeuronEVAFlow, встроенным в иерархию потоковых нейронов. Показаны подготовка, кодирование, первичное приближение потока и декодирование в режиме реального времени. Тесты на исторических и независимых данных MetaTrader 5 подтвердили контролируемые риски и положительное матожидание, что делает архитектуру пригодной для практического использования в стратегиях.
preview
Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (IV). Класс для панели управления торговлей

Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (IV). Класс для панели управления торговлей

Обновляем панель управления торговлей (TradeManagementPanel), используемую в нашем советнике New_Admin_Panel. В новой версии будем использовать встроенные классы и получим более удобный интерфейс управления сделками. В частности, добавим кнопки для открытия позиций, а также элементы для управления открытыми сделками и отложенными ордерами. Кроме того, в панели будет встроенная система управления рисками, чтобы устанавливать значения стоп-лосса и тейк-профита непосредственно через ее интерфейс. В целом обновление улучшает организацию самого кода, что важно для таких больших программ, а также упрощает доступ к инструментам управления ордерами — в определенных моментах это будет сделать проще, чем через интерфейс терминала.
preview
Нейросети в трейдинге: Потоковые модели с остаточной высокочастотной адаптацией (ResFlow)

Нейросети в трейдинге: Потоковые модели с остаточной высокочастотной адаптацией (ResFlow)

Статья знакомит с фреймворком ResFlow, созданным для анализа временной динамики событийных потоков. Фреймворк сочетает низкочастотное моделирование трендов с высокочастотной корректировкой локальных колебаний. Ключевые достоинства — модульность, гибкость интеграции с разными алгоритмами и эффективное повышение временного разрешения без лишней нагрузки на модель.
preview
Инженерия признаков с Python и MQL5 (Часть IV): Распознавание свечных паттернов с помощью UMAP-регрессии

Инженерия признаков с Python и MQL5 (Часть IV): Распознавание свечных паттернов с помощью UMAP-регрессии

Методы уменьшения размерности широко используются для повышения производительности моделей машинного обучения. Мы рассмотрим относительно новый метод UMAP (Uniform Manifold Approximation and Projection) — приближение и проекция на равномерном многообразии. Эта новая методика разработана специально для решения проблемы артефактов и искажений в данных, которые присущи традиционным методам. UMAP — это эффективный метод уменьшения размерности, который позволяет группировать похожие свечные графики новым способом, снижая вероятность ошибок на данных, не входящих в выборку, и улучшая результаты торговли.
preview
Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (V). Класс AnalyticsPanel

Создание торговой панели администратора на MQL5 (Часть IX): Организация кода (V). Класс AnalyticsPanel

В этой статье мы рассмотрим, как получать рыночные данные в реальном времени и информацию о торговом счете, выполнять различные вычисления и отображать результаты на настраиваемой панели. Для достижения этой цели мы углубимся в разработку класса AnalyticsPanel, который будет включать в себя все эти функции, в том числе создание панелей. Эта работа является частью нашего продолжающегося расширения советника новой панели администратора (New Admin Panel EA), внедряющей расширенные функции с использованием принципов модульного проектирования и лучших практик организации кода.