PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標
この記事では、あらゆる市場における価格レベルの変化を、それに対応する角度の変化へと変換する2回目の試みをおこないます。今回は、前回よりも数学的に洗練されたアプローチを採用しました。得られた結果は、アプローチを変更した判断が正しかった可能性を示唆しています。本日は、どの市場を分析する場合でも、極座標を用いて価格レベルの変化によって形成される角度を意味のある方法で計算する方法についてご説明します。
ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)
強化学習手法を検討するときは常に、環境を効率的に探索するという問題に直面します。この問題を解決すると、多くの場合、アルゴリズムが複雑になり、追加モデルの訓練が必要になります。この記事では、この問題を解決するための別のアプローチを見ていきます。
ニューラルネットワークが簡単に(第84回):RevIN (Reversible Normalization)
入力データの前処理がモデル訓練の安定性に大きく寄与することは、すでに広く知られています。オンラインで「生」の入力データを処理するために、バッチ正規化層が頻繁に使用されますが、時には逆の手順が求められる場合もあります。この記事では、この問題を解決するための1つのアプローチについて解説します。
リプレイシステムの開発(第28回):エキスパートアドバイザープロジェクト-C_Mouseクラス(II)
人々が初めてコンピューティングが可能なシステムを作り始めたとき、すべてには、プロジェクトを熟知しているエンジニアの参加が必要でした。コンピュータ技術の黎明期、プログラミング用の端末すらなかった時代の話です。それが発展し、より多くの人々が何かを創造できることに興味を持つようになると、新しいアイデアやプログラミングの方法が現れ、以前のようなコネクタの位置を変えるスタイルに取って変わりました。最初の端末が登場したのはこの時です。
最適化アルゴリズムを使用してEAパラメータをオンザフライで設定する
この記事では、最適化アルゴリズムを使用して最適なEAパラメータをオンザフライで見つけることや、取引操作とEAロジックの仮想化について、実践的な側面から論じています。この記事は、最適化アルゴリズムをEAに実装するためのインストラクションとして使用できます。
知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰
線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。
多層パーセプトロンとバックプロパゲーションアルゴリズム(その3):ストラテジーテスターとの統合 - 概要(I)
多層パーセプトロンは、非線形分離可能な問題を解くことができる単純なパーセプトロンを進化させたものです。バックプロパゲーションアルゴリズムと組み合わせることで、このニューラルネットワークを効果的に学習させることができます。多層パーセプトロンとバックプロパゲーション連載第3回では、このテクニックをストラテジーテスターに統合する方法を見ていきます。この統合により、取引戦略を最適化するためのより良い意思決定を目的とした複雑なデータ分析が可能になります。この記事では、このテクニックの利点と問題点について説明します。
CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する
CatBoostは、定常的な特徴量に基づいて意思決定をおこなうことに特化した、強力なツリーベースの機械学習モデルです。XGBoostやRandom Forestといった他のツリーベースモデルも、堅牢性、複雑なパターンへの対応力、そして高い解釈性といった点で共通した特長を備えています。これらのモデルは、特徴量分析からリスク管理に至るまで、幅広い分野で活用されています。本記事では、学習済みのCatBoostモデルを、従来型の移動平均クロスを用いたトレンドフォロー戦略のフィルターとして活用する手順を解説します。
古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略
MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。
ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練
さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。
初級から中級へ:FOR文
この記事では、FOR文の最も基本的な概念について解説します。ここで紹介する内容をしっかり理解することは非常に重要です。他の制御文と異なり、FOR文にはいくつか特有の癖があり、それが原因で複雑になりやすい側面があります。ですので、理解が追いつかないまま放置せず、できるだけ早い段階から学習と実践を始めるようにしましょう。。
どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス
シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。
ソフトウェア開発とMQL5におけるデザインパターン(第3回):振る舞いパターン1
デザインパターンの新しい記事として、その1タイプである振る舞いパターンを取り上げ、作成されたオブジェクト間の通信を効果的に構築する方法について説明します。これらの振る舞いパターンを完成させることで、再利用可能かつ拡張可能で、テストされたソフトウェアをどのように作成し、構築できるかを理解できるようになります。
ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)
研究者たちは、より正確な予測を得るために、しばしばモデルを複雑化します。しかし、その結果として、モデルの訓練やメンテナンスにかかるコストも増加します。この増大したコストは常に正当化されるのでしょうか。本記事では、シンプルで高速な線形モデルの特性を活かし、複雑なアーキテクチャを持つ最新モデルに匹敵する結果を示すアルゴリズムを紹介します。
リプレイシステムの開発 - 市場シミュレーション(第18回):ティックそしてまたティック(II)
明らかに、現在の指標は1分足を作成するのに理想的な時間からは程遠いです。それが最初に修正することです。同期の問題を解決するのは難しくありません。難しそうに思えるかもしれませんが、実際はとても簡単です。前回の記事の目的は、チャート上の1分足を作成するために使用されたティックデータを気配値ウィンドウに転送する方法を説明することであったため、必要な修正はおこないませんでした。
Murrayシステム再訪問
グラフィカルな価格分析システムは、当然ながらトレーダーの間で人気があります。今回は、有名なレベルを含む完全なMurray(マレー)システム、および現在の価格ポジションを評価し、取引を決定するための有用な他のテクニックについて説明します。
DoEasy - コントロール(第5部):WinForms基本オブジェクト、Panelコントロール、AutoSizeパラメータ
本稿では、すべてのライブラリWinFormsオブジェクトの基本オブジェクトを作成し、Panel WinFormsオブジェクトのAutoSizeプロパティ(オブジェクトの内部コンテンツに合わせた自動サイズ変更)の実装を開始する予定です。
ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール
アソシエーションルールの検討を続けます。前回の記事では、このタイプの問題の理論的側面について説明しました。この記事では、MQL5を使用したFPGrowthメソッドの実装を紹介します。また、実装したソリューションを実際のデータを使用してテストします。
ニューラルネットワークが簡単に(第57回):Stochastic Marginal Actor-Critic (SMAC)
今回は、かなり新しいStochastic Marginal Actor-Critic (SMAC)アルゴリズムを検討します。このアルゴリズムは、エントロピー最大化の枠組みの中で潜在変数方策を構築することができます。
ニューラルネットワークが簡単に(第61回):オフライン強化学習における楽観論の問題
オフライン訓練では、訓練サンプルデータに基づいてエージェントの方策を最適化します。その結果、エージェントは自分の行動に自信を持つことができます。しかし、そのような楽観論は必ずしも正当化されるとは限らず、模型の操作中にリスクを増大させる可能性があります。今日は、こうしたリスクを軽減するための方法の1つを紹介しましょう。
出来高による取引の洞察:トレンドの確認
強化型トレンド確認手法は、プライスアクション、出来高分析、そして機械学習を組み合わせることで、真の市場動向を見極めることを目的としています。この手法では、取引を検証するために、価格のブレイクアウトと平均比50%以上の出来高急増という2つの条件を満たす必要があります。さらに、追加の確認手段としてLSTMニューラルネットワークを活用します。システムはATR (Average True Range)に基づいたポジションサイズ設定と動的リスク管理を採用しており、誤ったシグナルを排除しつつ、多様な市場環境に柔軟に対応できる設計となっています。
MQL5での取引戦略の自動化(第8回):バタフライハーモニックパターンを用いたエキスパートアドバイザーの構築
この記事では、バタフライハーモニックパターンを検出するためのMQL5エキスパートアドバイザー(EA)を構築します。ピボットポイントを特定し、フィボナッチレベルを検証してパターンを確認します。次に、チャート上にパターンを可視化し、確認された際には自動的に取引を実行します。
ニューラルネットワークが簡単に(第41回):階層モデル
この記事では、複雑な機械学習問題を解決するための効果的なアプローチを提供する階層的訓練モデルについて説明します。階層モデルはいくつかのレベルで構成され、それぞれがタスクの異なる側面を担当します。
DoEasy - コントロール(第26部):ToolTip WinFormsオブジェクトの最終確認とProgressBarの開発開始
今回は、ツールチップコントロールの開発を完了し、ProgressBar WinFormsオブジェクトの開発を開始します。オブジェクトで作業しながら、コントロールやそのコンポーネントをアニメーション化するための普遍的な機能を開発する予定です。
Candlestick Trend Constraintモデルの構築(第2回):ネイティブ指標の結合
この記事では、トレンドから外れたシグナルを選別するために、MetaTrader 5指標を活用することに焦点を当てます。前回に引き続き、MQL5コードを使用してアイデアを最終的なプログラムに伝える方法を探っていきます。
MQL5で取引管理者パネルを作成する(第3回):ビジュアルスタイリングによるGUIの強化(I)
この記事では、MQL5を使用して、取引管理パネルのグラフィカルユーザーインターフェイス(GUI)を視覚的にスタイル設定することに焦点を当てます。MQL5で利用できるさまざまなテクニックと機能について説明します。これらのテクニックと機能により、インターフェイスのカスタマイズと最適化が可能になり、魅力的な外観を維持しながらトレーダーのニーズを満たすことができます。
リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)
前回の記事では、可能な限り最高の安定性を確保するために、レプリケーションシステムにいくつかの修正を加え、テストを追加しました。また、このシステムのコンフィギュレーションファイルの作成と使用も開始しました。
ニューラルネットワークが簡単に(第24部):転移学習用ツールの改善
前回の記事では、ニューラルネットワークのアーキテクチャを作成および編集するためのツールを作成しました。今日はこのツールでの作業を続けて、より使いやすくします。これは、私たちのトピックから一歩離れていると思われるかもしれませんが、うまく整理されたワークスペースは、結果を達成する上で重要な役割を果たすと思われないでしょうか。
DiscordとMetaTrader 5の統合:リアルタイム通知機能を備えたトレーディングボットの構築
この記事では、MetaTrader 5とDiscordサーバーを統合し、どこからでもリアルタイムで取引通知を受信する方法について解説します。Discordへのアラート配信を有効にするための、MetaTrader 5側およびDiscord側の設定方法を詳しく説明します。また、このような通知ソリューションでWebRequestやWebhookを利用する際に生じるセキュリティ上の注意点についても取り上げます。
知っておくべきMQL5ウィザードのテクニック(第23回):CNN
畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。
リプレイシステムの開発 - 市場シミュレーション(第8回):指標のロック
この記事では、MQL5言語を使用しながら指標をロックする方法を見ていきます。非常に興味深く素晴らしい方法でそれをおこないます。
DoEasy-コントロール(第24部):ヒント補助WinFormsオブジェクト
今回は、すべてのWinFormsライブラリオブジェクトの基本オブジェクトとメインオブジェクトを指定するロジックを見直し、新しいヒント基本オブジェクトとその派生クラスのいくつかを開発して、区切りの移動可能な方向を示すことにします。
価格変動モデルとその主な規定(第2回)。価格場の確率的発展方程式と観測されたランダムウォークの発生
この記事では、確率的な価格場の発展方程式と、今後の価格高騰の基準について考察しています。また、チャート上での価格値の本質と、そのランダムウォークが発生するメカニズムも明らかにします。
価格変動モデルとその主な規定(第3回):証券取引所の投機の最適なパラメータを計算する
確率論に基づき著者が開発した工学的アプローチの枠組みの中で、利益を生むポジションを建てるための条件を見つけ、最適な(利益を最大化する)利食いと損切りの値を計算します。
時系列分類問題における因果推論
この記事では、機械学習を用いた因果推論の理論と、Pythonによるカスタムアプローチの実装について見ていきます。因果推論と因果思考は哲学と心理学にルーツを持ち、現実を理解する上で重要な役割を果たしています。
MQL5の圏論(第18回):ナチュラリティスクエア(自然性の四角形)
この記事では、圏論の重要な柱である自然変換を紹介します。一見複雑に見える定義に注目し、次に本連載の「糧」であるボラティリティ予測について例と応用を掘り下げていきます。