ビデオ:MetaTrader5とMQL5での簡単な自動売買の設定方法
このビデオコースでは、MetaTrader 5をダウンロード、インストールして自動売買のために設定する方法を学びます。また、チャートの設定や自動売買のオプションの調整方法についても学びます。最初のバックテストをおこないます。このコースの終わりには、画面の前に座らなくても、24時間365日自動的に取引できるエキスパートアドバイザー(EA)をインポートする方法が分かります。
ウィリアムズPRによる取引システムの設計方法を学ぶ
MetaTrader 5で使用される最も人気のあるテクニカル指標によってMQL5で取引システムを設計する方法を学ぶ連載の新しい記事です。今回は、ウィリアムズの%R指標による取引システムの設計方法について学びます。
DoEasyライブラリのグラフィックス(第83部): 抽象標準グラフィカルオブジェクトのクラス
本稿では、抽象グラフィカルオブジェクトのクラスを作成します。このオブジェクトは、標準のグラフィカルオブジェクトのクラスを作成するための基礎として機能します。グラフィカルオブジェクトには複数のプロパティがあるため、抽象グラフィカルオブジェクトクラスを実際に作成する前に、多くの準備作業が必要です。この作業には、ライブラリ列挙型のプロパティの設定が含まれます。
モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引
この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。
PythonとMQL5でロボットを開発する(第3回):モデルベース取引アルゴリズムの実装
PythonとMQL5で自動売買ロボットを開発する連載を続けます。この記事では、Pythonで取引アルゴリズムを作成します。
パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化
この記事では、MetaTrader 4および5の取引の自動化チェーン全体を完成するだけでなく、より興味深いことができるようになった改善の最初の部分を示します。今後、このソリューションにより、EAの作成と最適化の両方を完全に自動化し、効果的な取引構成を見つけるための人件費を最小限に抑えることができます。
MQL5エキスパートアドバイザーに自動最適化を実装する方法
エキスパートアドバイザー(EA)のためのMQL5の自動最適化のためのステップバイステップガイド。堅牢な最適化ロジック、パラメーター選択のベストプラクティス、バックテストを通じた戦略の再構築方法について解説します。さらに、ウォークフォワード最適化などの高レベルな手法を紹介し、取引アプローチの強化を目指します。
DoEasyライブラリのグラフィックス(第82部): ライブラリオブジェクトのリファクタリングとグラフィカルオブジェクトのコレクション
本稿では、各オブジェクトに一意のタイプを割り当てることですべてのライブラリオブジェクトを改善し、ライブラリのグラフィカルオブジェクトコレクションクラスの開発を続けます。
データサイエンスと機械学習(第12回):自己学習型ニューラルネットワークは株式市場を凌駕することができるのか?
常に株式市場を予測しようとするのにお疲れでないでしょうか。より多くの情報に基づいた投資判断をするための水晶玉があったらとお思いでしょうか。自己学習型ニューラルネットワークは、あなたが探していたソリューションかもしれません。この記事では、これらの強力なアルゴリズムが、株式市場を凌駕する「波に乗る」のに役立つのかどうかを探ります。膨大な量のデータを分析し、パターンを特定することで、自己訓練されたニューラルネットワークは、しばしば人間のトレーダーよりも精度の高い予測をおこなうことができます。この最先端のテクノロジーを使って、利益を最大化し、よりスマートな投資判断をおこなう方法をご紹介します。
MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる
今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。
データサイエンスと機械学習(第09回):K近傍法(KNN)
これは、訓練データセットから学習しない遅延アルゴリズムです。代わりにデータセットを保存し、新しいサンプルが与えられるとすぐに動作します。シンプルでありながら、実世界でさまざまなケースに応用されています。
MFIによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する連載のこの新しい記事では、新しくマネーフローインデックス(Money Flow Index、MFI)テクニカル指標を考察します。その詳細を学び、MQL5によって簡単な取引システムを開発し、MetaTrader 5で実行します。
MQL5の圏論(第16回):多層パーセプトロンと関手
本連載16回目となる今回は、関手と、それが人工ニューラルネットワークを使ってどのように実装できるかを見ていきます。当連載ではこれまで、ボラティリティを予測するというアプローチをとってきましたが、今回はポジションのエントリーとエグジットのシグナルを設定するためのカスタムシグナルクラスの実装を試みます。
外国為替市場の季節性から利益を得る
例えば、冬になると新鮮な野菜の値段が上がったり、霜が降りると燃料の値段が上がったりすることはよく知られていますが、同じようなパターンが外国為替市場にもあることを知っている人は少ないです。
独自のLLMをEAに統合する(第3部):CPUを使った独自のLLMの訓練
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
単一チャート上の複数インジケータ(第03部): ユーザー向け定義の開発
今日はインジケータシステムの機能を初めて更新します。前回の「単一チャート上の複数のインジケータ」稿では、チャートのサブウィンドウで複数のインジケータを使用できるようにする基本的なコードについて検討しましたが、提示されたのは、はるかに大規模なシステムの出発点にすぎませんでした。
データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント
この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。
DoEasyライブラリでの価格(第64部): 板情報、DOMスナップショットのクラスおよびスナップショットシリーズオブジェクト
本稿では、2つのクラス(DOMスナップショットオブジェクトのクラスとDOMスナップショットシリーズオブジェクトのクラス)を作成し、DOMデータシリーズの作成をテストします。
ソーシャルトレーディング収益性の高いシグナルをさらに良くすることはできるでしょうか?
ほとんどのサブスクライバーは、バランス曲線の美しさとサブスクライバーの数で取引シグナルを選択しています。そのため、多くのプロバイダーは今日、シグナルの実際の質よりも、美しい統計により気を配り、多くの場合、トランザクションの量を多くして、人為的にバランス曲線を理想的な形にしています。この記事では、信頼性の基準と、プロバイダーがシグナルの品質を向上させる方法をご紹介します。特定のシグナルの履歴、またプロバイダーがより収益を上げ、リスクを低くするための方法の例をあげていきます。
一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)
今日は、新しい受注システムの開発を進めていきます。新しいシステムを導入するのはそう簡単なことではありません。プロセスが非常に複雑になるような問題がしばしば発生します。このような問題が発生したときは、一度立ち止まって、自分たちの進むべき方向を再分析しなければなりません。
自動で動くEAを作る(第12回):自動化(IV)
自動化されたシステムをシンプルだと思う方はおそらく、それを作るために必要なことを十分に理解していないのでしょう。今回は、多くのエキスパートアドバイザー(EA)を死に至らしめる問題点についてお話します。この問題を解決するために、無差別に注文をトリガーすることが考えられます。
エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第1部):オシレーター
この記事では、オシレーターカテゴリから標準的な指標を検討します。パラメータの宣言と設定、指標の初期化と初期化解除、EAの指標バッファからのデータとシグナルの受信など、EAですぐに使用できるテンプレートを作成します。
ティッカーテープパネルの作成:基本バージョン
ここでは、通常取引所の相場表示に使われるプライスティッカーを使った画面を作成する方法を紹介します。複雑な外部プログラミングを使わず、MQL5だけでやってみようと思います。
データサイエンスと機械学習(第07回)::多項式回帰
線形回帰とは異なり、多項式回帰は、線形回帰モデルでは処理できないタスクをより適切に実行することを目的とした柔軟なモデルです。MQL5で多項式モデルを作成し、そこから何か良いものを作る方法を見つけてみましょう。
DoEasyライブラリの時系列(第52部): 複数銘柄・複数期間の単一バッファ標準指標のクロスプラットフォーム化
本稿では、複数銘柄・複数期間のAccumulation/Distribution標準指標の作成を検討します。指標に関してライブラリクラスをわずかに改善し、このライブラリに基づいて古いMetaTrader 4プラットフォーム用に開発されたプログラムが、MetaTrader5に切り替えたときに正常に機能するようにします。
ボラティリティベースの取引システムの構築と最適化の方法(チャイキンボラティリティ - CHV)
この記事では、チャイキンボラティリティ(CHV、Chaikin Volatility)という名前の、ボラティリティに基づく後1つの指標を提供します。カスタム指標の使用方法と構築方法を確認した後、カスタム指標の構築方法を理解します。使用できるいくつかの簡単な戦略を共有し、どちらがより優れているかを理解するためにテストします。
ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)
強化学習アルゴリズムの研究を続けます。これまで検討してきたすべてのアルゴリズムでは、あるシステム状態から別の状態への遷移ごとに、エージェントがそれぞれの行動を評価できるようにするための報酬方策を作成する必要がありました。しかし、この方法はかなり人工的なものです。実際には、行動と報酬の間には、ある程度の時間差があります。今回は、行動から報酬までの様々な時間の遅れを扱うことができるモデル訓練アルゴリズムに触れてみましょう。
古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト
本稿では、線形判別分析(LDA: Linear Discriminant Analysis)とボリンジャーバンドを統合し、戦略的市場参入シグナルの生成を目的としたカテゴリ別ゾーン予測を活用する取引戦略を考察します。
ニューラルネットワークが簡単に(第16部):クラスタリングの実用化
前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。
知っておくべきMQL5ウィザードのテクニック(第42回):ADXオシレーター
ADXは、一部のトレーダーが一般的なトレンドの強さを測定するために使用する、もう1つの比較的人気のあるテクニカルインジケーターです。これは他の2つのインジケーターの組み合わせとして機能し、オシレーターとして表示されます。この記事では、MQL5ウィザードアセンブリとそのサポートクラスを使用して、そのパターンについて説明します。
MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築
この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。
市場シミュレーション(第1回):両建て注文(I)
本日から第2段階に入り、市場リプレイ/シミュレーションシステムについて見ていきます。まず、両建て注文の可能な解決策を示します。これは最終版ではありませんが、近い将来に解決しなければならない問題に対するひとつの可能なアプローチとなります。
DoEasyライブラリの時系列(第55部): 指標コレクションクラス
本稿では、指標オブジェクトクラスとそのコレクションの開発を続けます。指標オブジェクトごとに、その説明と正しいコレクションクラスを作成して、エラーなしのストレージを作成し、コレクションリストから指標オブジェクトを取得します。
EAを用いたリスクとキャピタルの管理
この記事では、バックテストレポートでは見えないこと、自動売買ソフトを使用する際の注意点、エキスパートアドバイザー(EA)を使用している場合の資金管理、自動売買をおこなっている場合に取引活動を続けるために大きな損失をカバーする方法について説明します。
ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関
ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。
確率最適化と最適制御の例
SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。