
ティッカーテープパネルの作成:改良版
ティッカーテープパネルの基本バージョンを復活させるというアイデアはいかがでしょうか。まずおこなうのは、資産のロゴやその他の画像などの画像を追加できるようにパネルを変更して、ユーザーが表示された銘柄をすばやく簡単に識別できるようにすることです。

一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)
今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。

モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化
本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。


DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能
現在、ライブラリでは、一部のパラメータの削除や変更など、クライアントターミナルのチャート上の標準のグラフィカルオブジェクトを追跡できます。現時点では、カスタムプログラムから標準グラフィカルオブジェクトを作成する機能はありません。

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、PERIOD_M15からPERIOD_D1までの多時間枠でパラボリックSARまたはiSARという1つの指標のみを使用します。

DoEasy - コントロール(第27部):ProgressBar WinFormsオブジェクトの操作
この記事では、ProgressBarコントロールの開発を続けます。特に、プログレスバーと視覚効果を管理するための機能を作成します。

MQL5の高度な変数とデータ型
変数とデータ型は、MQL5プログラミングだけでなく、どのプログラミング言語でも非常に重要なトピックです。MQL5の変数とデータ型は、単純なものと高度なものに分類できます。単純なものについては前回の記事ですでに述べたので、今回は高度なものを特定し、それについて学ぶことにします。

DoEasyライブラリの時系列(第51部): 複数銘柄・複数期間の複合標準指標
本稿では、 複数銘柄・複数期間標準指標のオブジェクトの開発を完結します。一目均衡表標準指標の例を使用して、チャートにデータを表示するための補助描画バッファを持つ複合カスタム指標の作成を分析します。

DoEasyライブラリの時系列(第50部): シフト付き複数銘柄・複数期間標準指標
本稿では、複数銘柄・複数期間標準指標を正しく表示するためのライブラリメソッドを改善して、設定されたシフトによってシフトされたラインが現在の銘柄チャートに表示されるようにします。また、標準指標を使用するメソッドを整理し、最終的な指標プログラムのライブラリにある冗長なコードを削除します。

時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第3回):Boom 1000アルゴリズムの解読
本連載では、動的な市場状況に自律的に適応できるエキスパートアドバイザー(EA)を構築する方法について説明します。本日の記事では、Derivの合成市場に合わせてディープニューラルネットワークを調整してみます。

確率最適化と最適制御の例
SMOC(Stochastic Model Optimal Controlの略と思われる)と名付けられたこのエキスパートアドバイザー(EA)は、MetaTrader 5用の高度なアルゴリズム取引システムのシンプルな例です。テクニカル指標、モデル予測制御、動的リスク管理を組み合わせて取引判断をおこないます。このEAには、適応パラメーター、ボラティリティに基づくポジションサイジング、トレンド分析が組み込まれており、さまざまな市場環境においてパフォーマンスを最適化します。

MQL5の圏論(第11回):グラフ
この記事は、MQL5での圏論の実装を考察する連載の続きです。ここでは、取引システムへのクローズアウト戦略を開発する際に、グラフ理論をモノイドやその他のデータ構造とどのように統合できるかを検討します。

ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関
ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加
この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。

ニューラルネットワークが簡単に(第20部):オートエンコーダ
教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。

多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携
取引戦略にはさまざまなものがあります。リスクを分散し、取引結果の安定性を高めるためには、複数の戦略を並行して適用することが有効かもしれません。ただし、それぞれのストラテジーが個別のエキスパートアドバイザー(EA)として実装されている場合、1つの取引口座でそれらの作業を管理することは非常に難しくなります。この問題を解決するのに合理的なのは、1つのEAで異なる取引戦略の運用を実装することです。

デマーカーによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、デマーカー(DeMarker)指標による取引システムの作り方を紹介します。

ニューラルネットワークが簡単に(第31部):進化的アルゴリズム
前回の記事では、非勾配最適化手法の調査を開始しました。遺伝的アルゴリズムについて学びました。今日は、このトピックを継続し、進化的アルゴリズムの別のクラスを検討します。

一からの取引エキスパートアドバイザーの開発(第27部):未来に向かって(II)
チャート上直接の発注システムをより完全にしましょう。この記事では、発注システムを修正する方法、またはより直感的にする方法を示します。

自動で動くEAを作る(第13回):自動化(V)
フローチャートとは何かご存じでしょうか。使い方はご存じですか。フローチャートは初心者向けだとお考えでしょうか。この新しい記事では、フローチャートの操作方法を説明します。

MQL5エキスパートアドバイザーに自動最適化を実装する方法
エキスパートアドバイザー(EA)のためのMQL5の自動最適化のためのステップバイステップガイド。堅牢な最適化ロジック、パラメーター選択のベストプラクティス、バックテストを通じた戦略の再構築方法について解説します。さらに、ウォークフォワード最適化などの高レベルな手法を紹介し、取引アプローチの強化を目指します。

MLモデルとストラテジーテスターの統合(第3回):CSVファイルの管理(II)
この記事では、MQL5でCSVファイルを効率的に管理するクラスを作成するための完全ガイドを提供します。データを開き、読み書きし、変換するメソッドの実装を見ていきます。また、情報を保存しアクセスするためにこれらを使用する方法についても検討します。さらに、このようなクラスを使用する際の制限や最も重要な点についても説明します。MQL5でCSVファイルを処理する方法を学びたい人にとって、この記事は貴重なリソースとなるでしょう。

DoEasy - コントロール(第7部):テキストラベルコントロール
今回の記事では、WinFormsテキストラベルコントロールオブジェクトのクラスを作成します。このようなオブジェクトはコンテナをどこにでも配置できますが、独自の機能はMS Visual Studioテキストラベルの機能を繰り返します。表示されるテキストのフォントパラメータは設定できます。

MQL5クックブック - マクロ経済イベントデータベース
この記事では、SQLiteエンジンに基づいてデータベースを処理する可能性について説明します。CDatabaseクラスは、OOP原則を便利かつ効率的に使用するために作成されました。その後、マクロ経済イベントのデータベースの作成と管理に関与しています。この記事では、CDatabaseクラスの複数のメソッドを使用する例を示します。

ボラティリティベースの取引システムの構築と最適化の方法(チャイキンボラティリティ - CHV)
この記事では、チャイキンボラティリティ(CHV、Chaikin Volatility)という名前の、ボラティリティに基づく後1つの指標を提供します。カスタム指標の使用方法と構築方法を確認した後、カスタム指標の構築方法を理解します。使用できるいくつかの簡単な戦略を共有し、どちらがより優れているかを理解するためにテストします。

一からの取引エキスパートアドバイザーの開発(第12部):Times and Trade (I)
今日は、注文の流れを読むために、高速な解釈を持つTimes & Tradeを作成します。これは、システムを構築していくうえで最初の部分です。次回は、足りない情報を補って、システムを完成させる予定です。この新しい機能を実装するために、エキスパートアドバイザー(EA)のコードにいくつかの新しいものを追加する必要があります。

多銘柄多期間指標の作成
この記事では、多銘柄、多期間の指標を作成する原則について見ていきます。また、エキスパートアドバイザー(EA)や他の指標から、このような指標のデータにアクセスする方法も紹介します。EAや指標でマルチ指標を使用する主な特徴について考察し、カスタム指標バッファを使用してそれらをプロットする方法を見ていきます。

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第7回):オーサムオシレーターシグナルを持つジグザグ
この記事の多通貨エキスパートアドバイザー(EA)は、オーサムオシレーター(AO、Awesome Oscillator)でフィルタされたジグザグ(ZigZag)指標を使用するまたは互いのシグナルをフィルタするEA(自動売買)です。

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(III)
連載第3回へようこそ。今回は、日足のトレンドに沿った最適なエントリーポイントを特定する戦略として、ダイバージェンスの活用について詳しく解説します。また、トレーリングストップロスに似た、しかし独自の機能を備えたカスタム利益ロック機構もご紹介します。さらに、Trend Constraint EAを高度化し、既存の取引条件を補完する形で新たなエントリー条件を追加します。今後も、MQL5を活用したアルゴリズム開発の実践的な応用方法を深掘りし、実際に使えるテクニックや洞察を継続的にお届けしていきます。

勢力指数による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、新しく、勢力指数(Force Index)テクニカル指標と、この指標を使った取引システムの作り方についてご紹介します。

MQL5入門(第2部):定義済み変数、共通関数、制御フロー文の操作
連載第2部の光り輝く旅に出かけましょう。これらの記事は単なるチュートリアルではなく、プログラミング初心者と魔法使いが共に集う魔法の世界への入り口です。この旅を本当に魔法のようなものにしているのは何でしょうか。連載第2部は、複雑な概念を誰にでも理解できるようにした、さわやかなシンプルさが際立っています。読者の質問にお答えしながら、双方向的に私たちと関わることで、充実した個別学習体験をお約束します。MQL5を理解することが誰にとっても冒険となるようなコミュニティを作りましょう。魔法の世界へようこそ。

ニューラルネットワークが簡単に(第96回):マルチスケール特徴量抽出(MSFformer)
長期的な依存関係と短期的な特徴量の効率的な抽出と統合は、時系列分析において依然として重要な課題です。正確で信頼性の高い予測モデルを作成するためには、それらを適切に理解し、統合することが必要です。

母集団最適化アルゴリズム:細菌採餌最適化(BFO)
大腸菌の採餌戦略は、科学者にBFO最適化アルゴリズムの作成を促しました。このアルゴリズムには、最適化に対する独自のアイデアと有望なアプローチが含まれており、さらに研究する価値があります。