ニューラルネットワークの実験(第4回):テンプレート
この記事では、実験と非標準的な方法を使用して収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。簡単に説明します。
Rebuyのアルゴリズム:多通貨取引シミュレーション
本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
MQL5入門(第2部):定義済み変数、共通関数、制御フロー文の操作
連載第2部の光り輝く旅に出かけましょう。これらの記事は単なるチュートリアルではなく、プログラミング初心者と魔法使いが共に集う魔法の世界への入り口です。この旅を本当に魔法のようなものにしているのは何でしょうか。連載第2部は、複雑な概念を誰にでも理解できるようにした、さわやかなシンプルさが際立っています。読者の質問にお答えしながら、双方向的に私たちと関わることで、充実した個別学習体験をお約束します。MQL5を理解することが誰にとっても冒険となるようなコミュニティを作りましょう。魔法の世界へようこそ。
オブジェクトを使用して複雑な指標を簡単に
この記事では、複数のプロットやバッファを扱ったり複数のソースからのデータを組み合わせたりするときに発生する問題を回避しながら、複雑な指標を作成する方法を紹介します。
DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス
本稿では、すべての銘柄の板情報コレクションクラスを作成し、シグナルオブジェクトクラスを作成することによってMQL5.comシグナルサービスを使用するための機能の開発を開始します。
一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?
今日は再びChart Tradeを使用しますが、今回はチャート上に存在する場合と存在しない場合があるオンチャート指標になります。
知っておくべきMQL5ウィザードのテクニック(第12回):ニュートン多項式
ニュートン多項式は、数点の集合から二次方程式を作るもので、時系列を見るには古風だが興味深いアプローチです。この記事では、このアプローチをトレーダーがどのような面で役立てることができるかを探るとともに、その限界についても触れてみたいと思います。
DoEasy - コントロール(第2部):CPanelクラスでの作業
今回は、グラフィック要素の処理に関連するエラーを取り除き、CPanelコントロールの開発を継続する予定です。特に、すべてのパネルテキストオブジェクトにデフォルトで使用されるフォントのパラメータを設定するメソッドを実装します。
モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化
本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。
ティッカーテープパネルの作成:改良版
ティッカーテープパネルの基本バージョンを復活させるというアイデアはいかがでしょうか。まずおこなうのは、資産のロゴやその他の画像などの画像を追加できるようにパネルを変更して、ユーザーが表示された銘柄をすばやく簡単に識別できるようにすることです。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第7回):オーサムオシレーターシグナルを持つジグザグ
この記事の多通貨エキスパートアドバイザー(EA)は、オーサムオシレーター(AO、Awesome Oscillator)でフィルタされたジグザグ(ZigZag)指標を使用するまたは互いのシグナルをフィルタするEA(自動売買)です。
Pythonを使ったEAとバックテストのための感情分析とディープラーニング
この記事では、EAで使用するPythonによる感情分析とONNXモデルを紹介します。あるスクリプトはTensorFlowで学習させたONNXモデルをディープラーニング予測用に実行し、別のスクリプトはニュースのヘッドラインを取得し、AIを使用して感情を数値化します。
知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析
今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探して試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがこの取り組みにおけるトレーダーの主力であるべきであることを示しています。
MQL5入門(第17回):トレンド反転のためのエキスパートアドバイザーの構築
この記事では、トレンドラインのブレイクアウトや反転を利用したチャートパターン認識に基づいて取引をおこなうMQL5のエキスパートアドバイザー(EA)の構築方法を初心者向けに解説します。トレンドラインの値を動的に取得し、プライスアクションと比較する方法を学ぶことで、読者は上昇・下降トレンドライン、チャネル、ウェッジ、トライアングルなどのチャートパターンを識別し取引できるEAを開発できるようになります。
Candlestick Trend Constraintモデルの構築(第3回):使用中のトレンド変化の検出
この記事では、経済ニュースの発表、投資家の行動、さまざまな要因が市場のトレンド反転にどのような影響を与えるかを探ります。ビデオによる説明もあり、MQL5のコードをプログラムに組み込むことで、トレンドの反転を検出し、警告を発し、市場の状況に応じて適切な行動を取ることができます。これは、本連載の過去の記事に基づいています。
一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)
この記事では、エキスパートアドバイザー(EA)のパフォーマンスを仕上げます。長くなるのでご準備ください。EAを信頼できるものにするために、まず取引システムの一部でないコードをすべて削除します。
一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)
本日は、Times & Tradeシステムの第2部である市場分析を構築します。前回の「Times & Trade (I)」稿では、市場で実行された取引を可能な限り迅速に解釈するための指標を持つことを可能にする代替のチャート編成システムについて説明しました。
MQL5の圏論(第17回):関手とモノイド
関手を題材にしたシリーズの最終回となる今回は、圏としてのモノイドを再考します。この連載ですでに紹介したモノイドは、多層パーセプトロンとともに、ポジションサイジングの補助に使われます。
知っておくべきMQL5ウィザードのテクニック(第07回):樹状図
分析や予測を目的としたデータの分類は、機械学習の中でも非常に多様な分野であり、数多くのアプローチや手法があります。この作品では、そのようなアプローチのひとつである「凝集型階層分類」を取り上げます。
バックテスト結果を改善するための生のコードの最適化と調整
MQL5コードを強化するために、ロジックの最適化、計算の精緻化、実行時間の短縮をおこない、バックテストの精度を向上させましょう。パラメータの微調整、ループの最適化、非効率の排除によって、より高いパフォーマンスを実現します。
DoEasy - コントロール(第27部):ProgressBar WinFormsオブジェクトの操作
この記事では、ProgressBarコントロールの開発を続けます。特に、プログレスバーと視覚効果を管理するための機能を作成します。
MQL5の圏論(第15回):関手とグラフ
この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。
ニューラルネットワークの実験(第1回):幾何学の再検討
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。
データサイエンスとML(第32回):AIモデルを最新の状態に保つ、オンライン学習
常に変化する取引の世界では、市場の変動に適応することは選択肢ではなく、必要不可欠です。新たなパターンやトレンドが日々生まれる中で、最先端の機械学習モデルでさえ、進化する環境に対応し続けることが困難になっています。本記事では、モデルを自動的に再訓練することで、その有効性を維持し、新しい市場データに柔軟に適応させる方法を解説します。
DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得
本稿では、EAで使用するためのカスタム指標オブジェクトの作成について検討します。ライブラリクラスを少し改善し、EAの指標オブジェクトからデータを取得するメソッドを追加しましょう。
キャンバスベースのインジケーター:チャネル内を透明にする
この記事では、標準ライブラリのCCanvasクラスを使用して描画されるカスタムインジケーターを作成して、座標変換のチャートプロパティを確認する方法を紹介します。特に、2本の線の間の領域を透明にする必要があるインジケーターに取り組みます。
プライスアクション分析ツールキットの開発(第19回):ZigZag Analyzer
すべてのプライスアクショントレーダーは、トレンドを確認し、転換点や継続の可能性があるレベルを見つけるために、トレンドラインを手動で使用します。本連載では、市場分析を簡単にするために、傾斜トレンドラインを描画することに特化したツールを紹介します。このツールは、トレーダーが効果的なプライスアクション評価に不可欠な主要トレンドとレベルを明確に示すことで、分析プロセスを簡素化します。
多銘柄多期間指標の作成
この記事では、多銘柄、多期間の指標を作成する原則について見ていきます。また、エキスパートアドバイザー(EA)や他の指標から、このような指標のデータにアクセスする方法も紹介します。EAや指標でマルチ指標を使用する主な特徴について考察し、カスタム指標バッファを使用してそれらをプロットする方法を見ていきます。
知っておくべきMQL5ウィザードのテクニック(第18回):固有ベクトルによるニューラルアーキテクチャの探索
ニューラルアーキテクチャー探索は、理想的なニューラルネットワーク設定を決定するための自動化されたアプローチで、多くのオプションや大規模なテストデータセットに直面したときにプラスになります。固有ベクトルをペアにすることで、この過程がさらに効率的になることを検証します。
DoEasyライブラリのグラフィックス(第73部): グラフィック要素のフォームオブジェクト
本稿からは、ライブラリでのグラフィックの使用に関する新しい大きなセクションを始めます。本稿では、マウスステータスオブジェクト、すべてのグラフィック要素の基本オブジェクト、およびライブラリのグラフィック要素のフォームオブジェクトのクラスを作成します。
一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)
今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。
デマーカーによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、デマーカー(DeMarker)指標による取引システムの作り方を紹介します。
MQL5とPythonを使用したブローカーAPIとエキスパートアドバイザーの統合
この記事では、Pythonと連携したMQL5の実装について解説し、ブローカー関連の操作を自動化する方法を紹介します。VPS上にホストされて継続的に稼働するエキスパートアドバイザー(EA)が、あなたに代わって取引を実行すると想像してください。ある時点で、EAによる資金管理機能が非常に重要になります。具体的には、取引口座への残高補充や出金などの操作を含みます。本稿では、これらの機能の利点と実際の実装例を紹介し、資金管理を取引戦略にシームレスに統合する方法をお伝えします。どうぞご期待ください。
手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する
この記事では、ストラテジーテスターでの手動バックテストを簡単におこなうための、カスタムMQL5ツールキットの設計について紹介します。設計と実装に焦点を当て、特にインタラクティブな取引操作の仕組みについて詳しく解説します。その後、このツールキットを使って、戦略を効果的にテストする方法を実演します。
DoEasyライブラリの時系列(第51部): 複数銘柄・複数期間の複合標準指標
本稿では、 複数銘柄・複数期間標準指標のオブジェクトの開発を完結します。一目均衡表標準指標の例を使用して、チャートにデータを表示するための補助描画バッファを持つ複合カスタム指標の作成を分析します。
MLモデルとストラテジーテスターの統合(第3回):CSVファイルの管理(II)
この記事では、MQL5でCSVファイルを効率的に管理するクラスを作成するための完全ガイドを提供します。データを開き、読み書きし、変換するメソッドの実装を見ていきます。また、情報を保存しアクセスするためにこれらを使用する方法についても検討します。さらに、このようなクラスを使用する際の制限や最も重要な点についても説明します。MQL5でCSVファイルを処理する方法を学びたい人にとって、この記事は貴重なリソースとなるでしょう。