GUI:MQLで独自のグラフィックライブラリを作成するためのヒントとコツ
GUIライブラリの基本的な使い方を説明し、GUIライブラリがどのように機能するのかを理解し、さらには自分自身のライブラリを作り始めることができるようにします。
多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携
取引戦略にはさまざまなものがあります。リスクを分散し、取引結果の安定性を高めるためには、複数の戦略を並行して適用することが有効かもしれません。ただし、それぞれのストラテジーが個別のエキスパートアドバイザー(EA)として実装されている場合、1つの取引口座でそれらの作業を管理することは非常に難しくなります。この問題を解決するのに合理的なのは、1つのEAで異なる取引戦略の運用を実装することです。
一からの取引エキスパートアドバイザーの開発(第26部):未来に向かって(I)
今日は、発注システムを次のレベルに引き上げます。ただしその前に、いくつかの問題を解決する必要があります。ここで、どのように働きたいか、取引日に何をするかに関連するいくつかの質問があります。
多銘柄多期間指標の作成
この記事では、多銘柄、多期間の指標を作成する原則について見ていきます。また、エキスパートアドバイザー(EA)や他の指標から、このような指標のデータにアクセスする方法も紹介します。EAや指標でマルチ指標を使用する主な特徴について考察し、カスタム指標バッファを使用してそれらをプロットする方法を見ていきます。
Pythonを使用したEA用ディープラーニングONNXモデルの季節性フィルタと期間
Pythonでディープラーニングのモデルを作成する際、季節性から恩恵を受けることはできるのでしょうか。ONNXモデルのデータをフィルタすることでより良い結果が得られるのでしょうか。どの期間を使用するべきでしょうか。この記事では、これらすべてを取り上げます。
エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第1部):オシレーター
この記事では、オシレーターカテゴリから標準的な指標を検討します。パラメータの宣言と設定、指標の初期化と初期化解除、EAの指標バッファからのデータとシグナルの受信など、EAですぐに使用できるテンプレートを作成します。
MQL5入門(第17回):トレンド反転のためのエキスパートアドバイザーの構築
この記事では、トレンドラインのブレイクアウトや反転を利用したチャートパターン認識に基づいて取引をおこなうMQL5のエキスパートアドバイザー(EA)の構築方法を初心者向けに解説します。トレンドラインの値を動的に取得し、プライスアクションと比較する方法を学ぶことで、読者は上昇・下降トレンドライン、チャネル、ウェッジ、トライアングルなどのチャートパターンを識別し取引できるEAを開発できるようになります。
MQL5の圏論(第20回):セルフアテンションとTransformerへの回り道
ちょっと寄り道して、chatGPTのアルゴリズムの一部について考えてみたいとおもいます。自然変換から借用した類似点や概念はあるのでしょうか。シグナルクラス形式のコードを用いて、これらの疑問やその他の質問に楽しく答えようと思います。
一からの取引エキスパートアドバイザーの開発(第25部):システムの堅牢性の提供(II)
この記事では、エキスパートアドバイザー(EA)のパフォーマンスを仕上げます。長くなるのでご準備ください。EAを信頼できるものにするために、まず取引システムの一部でないコードをすべて削除します。
ニューラルネットワークが簡単に(第53回):報酬の分解
報酬関数を正しく選択することの重要性については、すでに何度かお話ししました。報酬関数は、個々の行動に報酬またはペナルティを追加することでエージェントの望ましい行動を刺激するために使用されます。しかし、エージェントによる信号の解読については未解決のままです。この記事では、訓練されたエージェントに個々のシグナルを送信するという観点からの報酬分解について説明します。
ニューラルネットワークが簡単に(第63回):Unsupervised Pretraining for Decision Transformer (PDT)
引き続き、Decision Transformer法のファミリーについて説明します。前回の記事から、これらの手法のアーキテクチャの基礎となるTransformerの訓練はかなり複雑なタスクであり、訓練のために大規模なラベル付きデータセットが必要であることにすでに気づきました。この記事では、ラベル付けされていない軌跡をモデルの予備訓練に使用するアルゴリズムについて見ていきます。
DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス
本稿では、板情報を使用するための機能の開発を開始します。また、板情報抽象注文オブジェクトとその子孫のクラスも作成します。
エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第2部):出来高指標とビルウィリアムズの指標
この記事では、標準的な出来高指標とビルウィリアムズ指標のカテゴリについて見ていきます。パラメータの宣言と設定、指標の初期化と解除、EAの指標バッファからのデータとシグナルの受信など、EAで指標を使用するためのすぐに使えるテンプレートを作成します。
知っておくべきMQL5ウィザードのテクニック(第07回):樹状図
分析や予測を目的としたデータの分類は、機械学習の中でも非常に多様な分野であり、数多くのアプローチや手法があります。この作品では、そのようなアプローチのひとつである「凝集型階層分類」を取り上げます。
モデル解釈をマスターする:機械学習モデルからより深い洞察を得る
機械学習は複雑で、経験を問わず誰にとってもやりがいのある分野です。この記事では、構築されたモデルを動かす内部メカニズムに深く潜り込み、複雑な特徴、予測、そしてインパクトのある決断の世界を探求し、複雑さを解きほぐし、モデルの解釈をしっかりと把握します。トレードオフをナビゲートし、予測を強化し、確実な意思決定をおこないながら特徴の重要性をランク付けする技術を学びます。この必読書は、機械学習モデルからより多くのパフォーマンスを引き出し、機械学習手法を採用することでより多くの価値を引き出すのに役立ちます。
DoEasyライブラリの時系列(第54部): 抽象基本指標の子孫クラス
本稿では、基本抽象指標の子孫オブジェクトのクラスの作成について検討しています。このようなオブジェクトは、指標EAを作成し、さまざまな指標と価格のデータ値統計を収集および取得する機能へのアクセスを備えています。また、プログラムで作成された各指標のプロパティとデータにアクセスできる指標オブジェクトコレクションを作成します。
一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)
新しい受注システムの導入を継続します。このようなシステムを作るには、MQL5を使いこなすだけでなく、MetaTrader 5プラットフォームが実際にどのように機能し、どのようなリソースを提供しているかを理解することが必要です。
Rebuyのアルゴリズム:多通貨取引シミュレーション
本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較
Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。
データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて
ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。
Candlestick Trend Constraintモデルの構築(第3回):使用中のトレンド変化の検出
この記事では、経済ニュースの発表、投資家の行動、さまざまな要因が市場のトレンド反転にどのような影響を与えるかを探ります。ビデオによる説明もあり、MQL5のコードをプログラムに組み込むことで、トレンドの反転を検出し、警告を発し、市場の状況に応じて適切な行動を取ることができます。これは、本連載の過去の記事に基づいています。
ニューラルネットワークの実験(第4回):テンプレート
この記事では、実験と非標準的な方法を使用して収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。簡単に説明します。
ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2
デザインパターンには、生成デザインパターン、構造デザインパターン、振る舞いデザインパターンの3タイプがあることを説明しました。コードをクリーンにしながらオブジェクト間の相互作用の方法を設定するのに役立つ、残りの振る舞いタイプのパターンの説明を完成させます。
キャンバスベースのインジケーター:チャネル内を透明にする
この記事では、標準ライブラリのCCanvasクラスを使用して描画されるカスタムインジケーターを作成して、座標変換のチャートプロパティを確認する方法を紹介します。特に、2本の線の間の領域を透明にする必要があるインジケーターに取り組みます。
バックテスト結果を改善するための生のコードの最適化と調整
MQL5コードを強化するために、ロジックの最適化、計算の精緻化、実行時間の短縮をおこない、バックテストの精度を向上させましょう。パラメータの微調整、ループの最適化、非効率の排除によって、より高いパフォーマンスを実現します。
DoEasy - コントロール(第2部):CPanelクラスでの作業
今回は、グラフィック要素の処理に関連するエラーを取り除き、CPanelコントロールの開発を継続する予定です。特に、すべてのパネルテキストオブジェクトにデフォルトで使用されるフォントのパラメータを設定するメソッドを実装します。
データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?
畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。
MQL5とPythonを使用したブローカーAPIとエキスパートアドバイザーの統合
この記事では、Pythonと連携したMQL5の実装について解説し、ブローカー関連の操作を自動化する方法を紹介します。VPS上にホストされて継続的に稼働するエキスパートアドバイザー(EA)が、あなたに代わって取引を実行すると想像してください。ある時点で、EAによる資金管理機能が非常に重要になります。具体的には、取引口座への残高補充や出金などの操作を含みます。本稿では、これらの機能の利点と実際の実装例を紹介し、資金管理を取引戦略にシームレスに統合する方法をお伝えします。どうぞご期待ください。
一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?
今日は再びChart Tradeを使用しますが、今回はチャート上に存在する場合と存在しない場合があるオンチャート指標になります。
DoEasy - コントロール(第27部):ProgressBar WinFormsオブジェクトの操作
この記事では、ProgressBarコントロールの開発を続けます。特に、プログレスバーと視覚効果を管理するための機能を作成します。
DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス
本稿では、すべての銘柄の板情報コレクションクラスを作成し、シグナルオブジェクトクラスを作成することによってMQL5.comシグナルサービスを使用するための機能の開発を開始します。
初心者からエキスパートへ:ローソク足のプログラミング
この記事では、MQL5プログラミングの第一歩を、完全な初心者でも理解できるように解説します。よく知られているローソク足パターンを、実際に機能するカスタムインジケーターへと変換する方法を紹介します。ローソク足パターンは、実際の価格変動を反映し、市場の転換を示唆するため、非常に有用です。チャートを目視で確認してパターンを探す手法ではミスや非効率が生じやすいため、この記事では、パターンを自動的に識別・ラベル付けしてくれるインジケーターを作成する方法を説明します。その過程で、インデックス(索引)、時系列、ATR(市場の変動性に応じた精度向上のため)などの重要な概念についても解説し、今後のプロジェクトで再利用可能なカスタムローソク足パターンライブラリの開発にも触れていきます。
PythonとMQL5を使用して初めてのグラスボックスモデルを作る
機械学習モデルの解釈は難しく、このような高度なテクニックを使用して何らかの価値を得たいのであれば、モデルが予想から外れる理由を理解することが重要です。モデルの内部構造に対する包括的な洞察がなければ、モデルのパフォーマンスを低下させるバグを発見できないことがあります。予測できない機能のエンジニアリングに時間を浪費し、長期的にはモデルのパワーを十分に活用できない危険性があります。幸いなことに、モデルの内部で何が起こっているかを正確に見ることができる、洗練され、よく整備されたオールインワンソリューションがあります。
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする
ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化
本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。
ニューラルネットワークが簡単に(第20部):オートエンコーダ
教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。
MQL5入門(第12回):初心者のためのカスタムインジケーター作成ガイド
MQL5でカスタムインジケーターを構築する方法を学びます。プロジェクトベースのアプローチを採用します。この初心者向けガイドでは、インジケーターバッファ、プロパティ、トレンドの視覚化について解説し、段階的に学習を進めることができます。