MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
DoEasyライブラリのグラフィックス(第98部):拡張された標準グラフィカルオブジェクトのピボットポイントの移動

DoEasyライブラリのグラフィックス(第98部):拡張された標準グラフィカルオブジェクトのピボットポイントの移動

本稿では、拡張された標準グラフィカルオブジェクトの開発を継続し、グラフィカルオブジェクトのピボットポイントの座標を管理するためのコントロールポイントを使用して、複合グラフィカルオブジェクトのピボットポイントを移動する機能を作成します。
preview
DoEasy-コントロール(第14部):グラフィック要素に名前を付けるための新しいアルゴリズム。TabControl WinFormsオブジェクトへの作業の継続

DoEasy-コントロール(第14部):グラフィック要素に名前を付けるための新しいアルゴリズム。TabControl WinFormsオブジェクトへの作業の継続

この記事では、カスタムグラフィックを構築するためのすべてのグラフィック要素に名前を付けるための新しいアルゴリズムを作成し、TabControl WinFormsオブジェクトの開発を継続する予定です。
preview
時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

時系列マイニングのためのデータラベル(第1回):EA操作チャートでトレンドマーカー付きデータセットを作成する

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
チャート上で取引を視覚化する(第1回):分析期間の選択

チャート上で取引を視覚化する(第1回):分析期間の選択

ここでは、取引エントリを分析するために取引の印刷画面のアンロードを簡素化するスクリプトをゼロから開発します。単一の取引に関するすべての必要な情報は、異なる時間枠を描画する機能を備えた1つのチャートに便利に表示されます。
preview
雲モデル最適化(ACMO):理論

雲モデル最適化(ACMO):理論

この記事は、最適化問題を解決するために雲の挙動をシミュレートするメタヒューリスティックな雲モデル最適化(ACMO: Atmosphere Clouds Model Optimization)アルゴリズムについて解説します。このアルゴリズムは、雲の生成、移動、拡散といった自然現象の原理を用いて、解空間内の「気象条件」に適応します。この記事では、ACMOの気象的なシミュレーションが、複雑な可能性空間の中でどのようにして最適解を導き出すかを明らかにし、「空」の準備、雲の生成、雲の移動、そして雨の集約といった各ステップを詳しく説明します。
preview
DoEasy - コントロール(第4部):パネルコントロールとPadding and Dockパラメータ

DoEasy - コントロール(第4部):パネルコントロールとPadding and Dockパラメータ

今回は、Paddingパラメータ(要素の四辺の内部インデント/マージン)とDockパラメータ(コンテナ内のオブジェクトの配置方法)の扱いを実装します。
リプレイシステムの開発 - 市場シミュレーション(第10回):リプレイで実データのみを使用する
リプレイシステムの開発 - 市場シミュレーション(第10回):リプレイで実データのみを使用する

リプレイシステムの開発 - 市場シミュレーション(第10回):リプレイで実データのみを使用する

ここでは、リプレイシステムで、調整されているかどうかを気にすることなく、より信頼性の高いデータ(取引されたティック)を使用する方法を見ていきます。
preview
機械学習における量子化(第2回):データの前処理、テーブルの選択、CatBoostモデルの訓練

機械学習における量子化(第2回):データの前処理、テーブルの選択、CatBoostモデルの訓練

この記事では、ツリーモデルの構築における量子化の実際の応用について考察します。量子化テーブルの選択方法とデータの前処理について検討します。複雑な数式は使用しません。
preview
母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

母集団最適化アルゴリズム:スマート頭足類(SC、Smart Cephalopod)を使用した変化する形状、確率分布の変化とテスト

この記事では、確率分布の形状を変えることが最適化アルゴリズムの性能に与える影響について検証します。最適化問題の文脈における様々な確率分布の効率を評価するために、スマート頭足類(SC、Smart Cephalopod)テストアルゴリズムを用いた実験をおこないます。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):ストップアウト防止

本日は、勝ちトレードでストップアウトされる回数を最小限に抑えるためのアルゴリズム的手法を探るディスカッションにご参加ください。この問題は非常に難易度が高く、取引コミュニティで見られる多くの提案は、明確で一貫したルールに欠けているのが実情です。私たちはこの課題に対してアルゴリズム的なアプローチを用いることで、トレードの収益性を高め、1回あたりの平均損失を減らすことに成功しました。とはいえ、ストップアウトを完全に排除するには、まださらなる改良が必要です。私たちの解決策は、それには至らないものの、誰にとっても試す価値のある良い第一歩です。
preview
母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)

母集団最適化アルゴリズム:等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズム(第2部)

第1部では、よく知られた一般的なアルゴリズムである焼きなまし法について説明しました。その長所と短所を徹底的に検討しました。第2部では、アルゴリズムを抜本的に改良し、新たな最適化アルゴリズムである等方的焼きなまし(Simulated Isotropic Annealing、SIA)法を紹介します。
preview
Across Neighbourhood Search (ANS)

Across Neighbourhood Search (ANS)

この記事では、問題の詳細と検索空間内の環境のダイナミクスを考慮できる柔軟でインテリジェントな最適化手法の開発における重要なステップとしてのANSアルゴリズムの可能性を明らかにします。
preview
MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第6回): Deep Double Descentの活用

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第6回): Deep Double Descentの活用

伝統的な機械学習では、モデルの過剰適合を防ぐことが実践者にとって重要であると教えられます。しかし、この考え方は、ハーバード大学の勤勉な研究者たちによって発表された新たな洞察によって見直されつつあります。彼らの研究によれば、一見すると過剰適合に見える現象が、場合によっては訓練プロセスを早期に終了した結果である可能性があることが示唆されています。本記事では、この研究論文で提案されたアイデアを活用し、市場リターン予測におけるAIの利用をどのように向上させられるかを解説します。
preview
ニューラルネットワークが簡単に(第64回):ConserWeightive Behavioral Cloning (CWBC)法

ニューラルネットワークが簡単に(第64回):ConserWeightive Behavioral Cloning (CWBC)法

以前の記事でおこなったテストの結果、訓練された戦略の最適性は、使用する訓練セットに大きく依存するという結論に達しました。この記事では、モデルを訓練するための軌道を選択するための、シンプルかつ効果的な手法を紹介します。
preview
母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム

母集団最適化アルゴリズム:Spiral Dynamics Optimization (SDO)アルゴリズム

本稿では、軟体動物の殻など自然界における螺旋軌道の構築パターンに基づく最適化アルゴリズム、Spiral Dynamics Optimization(SDO、螺旋ダイナミクス最適化)アルゴリズムを紹介します。著者らが提案したアルゴリズムを徹底的に修正し、改変しました。この記事では、こうした変更の必要性について考えてみたいと思います。
preview
知っておくべきMQL5ウィザードのテクニック(第10回):型破りなRBM

知っておくべきMQL5ウィザードのテクニック(第10回):型破りなRBM

制限ボルツマンマシン(Restrictive Boltzmann Machine、RBM)は、基本的なレベルでは、次元削減による教師なし分類に長けた2層のニューラルネットワークです。その基本原理を採用し、常識にとらわれない方法で設計し直して訓練すれば有用なシグナルフィルタが得られるかどうかを検証します。
DoEasyライブラリのグラフィックス(第95部):複合グラフィカルオブジェクトコントロール
DoEasyライブラリのグラフィックス(第95部):複合グラフィカルオブジェクトコントロール

DoEasyライブラリのグラフィックス(第95部):複合グラフィカルオブジェクトコントロール

本稿では、複合グラフィカルオブジェクトを管理するためのツールキット(拡張された標準グラフィカルオブジェクトを管理するためのコントロール)について検討します。今日は、複合グラフィカルオブジェクトの再配置から少し脱線して、複合グラフィカルオブジェクトを特徴とするチャートに変更イベントのハンドラを実装します。さらに、複合グラフィカルオブジェクトを管理するためのコントロールに焦点を当てます。
preview
ニューラルネットワークが簡単に(第74回):適応による軌道予測

ニューラルネットワークが簡単に(第74回):適応による軌道予測

本稿では、様々な環境条件に適応可能なマルチエージェントの軌道予測について、かなり効果的な手法を紹介します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第4回):関数コードのモジュール化による再利用性の向上

MQL5-Telegram統合エキスパートアドバイザーの作成(第4回):関数コードのモジュール化による再利用性の向上

の記事では、MQL5からTelegramへのメッセージおよびスクリーンショット送信に使用されている既存コードを、再利用可能なモジュール関数へと整理し、リファクタリングをおこないます。これによりプロセス全体が効率化され、複数インスタンスでの実行効率が高まるだけでなく、コードの管理も容易になります。
preview
取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

この記事では、点群におけるオブジェクト検出問題を解決するためのアテンションを用いたアルゴリズムについて解説します。点群におけるオブジェクト検出は、多くの現実世界の応用において極めて重要です。
preview
ログレコードをマスターする(第1回):MQL5の基本概念と最初のステップ

ログレコードをマスターする(第1回):MQL5の基本概念と最初のステップ

新たな旅の始まりへようこそ。この記事は、MQL5言語で開発する方向けに、ログ操作のライブラリを段階的に作成するという特別な連載の最初の記事です。
preview
ニューラルネットワークが簡単に(第60回):Online Decision Transformer (ODT)

ニューラルネットワークが簡単に(第60回):Online Decision Transformer (ODT)

最後の2つの記事は、望ましい報酬の自己回帰モデルの文脈で行動シーケンスをモデル化するDecision Transformer法に費やされました。この記事では、この方法の別の最適化アルゴリズムについて見ていきます。
preview
初心者のためのMQL5によるSP500取引戦略

初心者のためのMQL5によるSP500取引戦略

MQL5を活用してS&P500指数を正確に予測する方法をご紹介します。古典的なテクニカル分析とアルゴリズム、そして長年の経験に裏打ちされた原理を組み合わせることで、安定性を高め、確かな市場洞察力を得られます。
preview
MQL5における代替リスクリターン指標

MQL5における代替リスクリターン指標

本稿では、シャープレシオの代替指標とされるいくつかのリスクリターン指標の実装を紹介し、その特徴を分析するために仮想資本曲線を検証します。
preview
MQL5における高度なメモリ管理と最適化テクニック

MQL5における高度なメモリ管理と最適化テクニック

MQL5の取引システムにおけるメモリ使用を最適化するための実践的なテクニックを紹介します。効率的で安定性が高く、高速に動作するエキスパートアドバイザー(EA)やインジケーターの構築方法を学びましょう。MQL5でのメモリの仕組み、システムを遅くしたり不安定にしたりする一般的な落とし穴、そして、最も重要なこととして、それらを解決する方法について詳しく解説します。
preview
ニューラルネットワークが簡単に(第68回):オフライン選好誘導方策最適化

ニューラルネットワークが簡単に(第68回):オフライン選好誘導方策最適化

最初の記事で強化学習を扱って以来、何らかの形で、環境の探索と報酬関数の決定という2つの問題に触れてきました。最近の記事は、オフライン学習における探索の問題に費やされています。今回は、作者が報酬関数を完全に排除したアルゴリズムを紹介したいと思います。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する

MQL5-Telegram統合エキスパートアドバイザーの作成(第5回):TelegramからMQL5にコマンドを送信し、リアルタイムの応答を受信する

この記事では、MQL5とTelegram間のリアルタイム通信を容易にするためのいくつかのクラスを作成します。Telegramからコマンドを取得し、それをデコードして解釈し、適切な応答を送り返すことに重点を置きます。最終的には、これらの相互作用が取引環境内で効果的にテストされ、運用されていることを確認します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第7回):チャート上のインジケーター自動化のためのコマンド解析

MQL5-Telegram統合エキスパートアドバイザーの作成(第7回):チャート上のインジケーター自動化のためのコマンド解析

この記事では、TelegramコマンドをMQL5と統合して、取引チャートへのインジケーターの追加を自動化する方法について解説します。ユーザーからのコマンドを解析し、MQL5で実行し、インジケーターベースの取引を円滑におこなうためのシステムをテストするプロセスについて説明します。
preview
データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明

データサイエンスと機械学習(第21回):ニューラルネットワークと最適化アルゴリズムの解明

ニューラルネットワーク内部で使用される最適化アルゴリズムを解明しながら、ニューラルネットワークの核心に飛び込みます。この記事では、ニューラルネットワークの可能性を最大限に引き出し、モデルを精度と効率の新たな高みへと押し上げる重要なテクニックご紹介します。
preview
MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

MQL5における修正グリッドヘッジEA(第4部):シンプルなグリッド戦略の最適化(I)

この第4部では、以前に開発したシンプルヘッジとシンプルグリッドエキスパートアドバイザー(EA)を再考します。最適な戦略の使用を目指し、数学的分析と総当り攻撃アプローチを通じてシンプルグリッドEAを改良することに焦点を移します。戦略の数学的最適化について深く掘り下げ、後の回でコーディングに基づく最適化を探求するための舞台を整えます。
preview
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(II)

初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(II)

本日は、外部ニュースAPIを統合し、News Headline EAの見出し取得元として活用する新たなステップに進みます。このフェーズでは、既存の大手ニュースソースから新興の情報源まで幅広く取り上げ、それぞれのAPIに効果的にアクセスする方法を学びます。さらに、取得したデータをパースし、エキスパートアドバイザー(EA)内での表示に最適化された形式へ変換する手法についても解説します。ニュース見出しや経済指標カレンダーをチャート上に直接表示できることには、大きなメリットがあります。コンパクトで邪魔にならないインターフェースを通じて、取引中でも効率的に情報を確認できるようになるのです。
MVCデザインパターンとその可能なアプリケーション(第2部): 3つのコンポーネント間の相互作用の図
MVCデザインパターンとその可能なアプリケーション(第2部): 3つのコンポーネント間の相互作用の図

MVCデザインパターンとその可能なアプリケーション(第2部): 3つのコンポーネント間の相互作用の図

本稿は、前の記事で説明したMQLプログラムのMVCパターンのトピックの続きです。この記事では、パターンの3つのコンポーネント間の可能な相互作用の図を検討します。
preview
ニューラルネットワークが簡単に(第67回):過去の経験を活かした新しい課題の解決

ニューラルネットワークが簡単に(第67回):過去の経験を活かした新しい課題の解決

この記事では、訓練セットにデータを収集する方法について引き続き説明します。明らかに、学習プロセスには環境との絶え間ない相互作用が必要です。しかし、状況はさまざまです。
DoEasyライブラリのグラフィックス(第78部): ライブラリのアニメーションの原則イメージスライス
DoEasyライブラリのグラフィックス(第78部): ライブラリのアニメーションの原則イメージスライス

DoEasyライブラリのグラフィックス(第78部): ライブラリのアニメーションの原則イメージスライス

この記事では、ライブラリの一部で使用されるアニメーションの原則を定義します。また、画像の一部をコピーして指定したフォームオブジェクトの場所に貼り付け、画像が重ねられるフォームの背景の一部を保存して復元するクラスを開発します。
preview
ニューラルネットワークが簡単に(第45回):状態探索スキルの訓練

ニューラルネットワークが簡単に(第45回):状態探索スキルの訓練

明示的な報酬関数なしに有用なスキルを訓練することは、階層的強化学習における主な課題の1つです。前回までに、この問題を解くための2つのアルゴリズムを紹介しましたが、環境調査の完全性についての疑問は残されています。この記事では、スキル訓練に対する異なるアプローチを示します。その使用は、システムの現在の状態に直接依存します。
preview
母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)

母集団最適化アルゴリズム:細菌採餌最適化-遺伝的アルゴリズム(BFO-GA)

本稿では、細菌採餌最適化(BFO)アルゴリズムのアイデアと遺伝的アルゴリズム(GA)で使用される技術を組み合わせ、ハイブリッドBFO-GAアルゴリズムとして最適化問題を解くための新しいアプローチを紹介します。最適解を大域的に探索するために細菌の群れを使い、局所最適解を改良するために遺伝的演算子を使用します。元のBFOとは異なり、細菌は突然変異を起こし、遺伝子を受け継ぐことができるようになっています。
preview
データサイエンスとML(第36回):偏った金融市場への対処

データサイエンスとML(第36回):偏った金融市場への対処

金融市場は完全に均衡しているわけではありません。強気の市場もあれば、弱気の市場もあり、どちらの方向にも不確かなレンジ相場を示す市場もあります。このようなバランスの取れていない情報を用いて機械学習モデルを訓練すると、市場が頻繁に変化するため、誤った予測を導く原因になります。この記事では、この問題に対処するためのいくつかの方法について議論していきます。
preview
MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成

MQL5のパラボリックSARトレンド戦略による取引戦略の自動化:効果的なEAの作成

この記事では、MQL5を使用してパラボリックSAR戦略を基にした取引戦略を自動化する方法について説明します。効果的なエキスパートアドバイザー(EA)を創り出します。このEAは、パラボリックSAR指標によって識別されたトレンドに基づいて取引を実行します。
preview
Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第1回):パネルの設定

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第1回):パネルの設定

この記事では、取引操作を効率化するために設計されたMQL5のControlsクラスを使用して、インタラクティブな取引ダッシュボードを作成します。パネルには、タイトル、[Trade]、[Close]、[Information]のナビゲーションボタン、取引の実行とポジションの管理用の専用アクションボタンが表示されます。この記事を読み終える頃には、今後の記事でさらに機能強化するための基礎パネルが完成しているはずです。
preview
リプレイシステムの開発 - 市場シミュレーション(第17回):ティックそしてまたティック(I)

リプレイシステムの開発 - 市場シミュレーション(第17回):ティックそしてまたティック(I)

ここでは、非常に興味深いものを実装する方法を見ていきますが、同時に、非常にわかりにくい点があるため非常に難しくなります。起こり得る最悪の事態は、自分をプロだと思っている一部のトレーダーが、資本市場におけるこれらの概念の重要性について何も知らないことです。さて、ここではプログラミングに焦点を当てていますが、私たちが実装しようとしているものにとって最も重要なのは市場取引に伴う問題のいくつかを理解することです。