MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
一からの取引エキスパートアドバイザーの開発(第29部):おしゃべりプラットフォーム

一からの取引エキスパートアドバイザーの開発(第29部):おしゃべりプラットフォーム

この記事では、MetaTrader 5プラットフォームをしゃべらせる方法を学びます。EAをもっと楽しくしたらどうでしょうか。金融市場の取引は退屈で単調すぎることがよくありますが、私たちはこの仕事の疲れを軽減することができます。依存症などの問題を経験している方にとってはこのプロジェクトは危険な場合があるのでご注意ください。ただし、一般的には、それは退屈を軽減するだけです。
preview
Pythonを使ったEAとバックテストのための感情分析とディープラーニング

Pythonを使ったEAとバックテストのための感情分析とディープラーニング

この記事では、EAで使用するPythonによる感情分析とONNXモデルを紹介します。あるスクリプトはTensorFlowで学習させたONNXモデルをディープラーニング予測用に実行し、別のスクリプトはニュースのヘッドラインを取得し、AIを使用して感情を数値化します。
DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標
DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標

DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標

本稿では、単一の指標バッファを使用して、指標サブウィンドウを構築および操作するための複数銘柄・複数期間標準指標の作成例について説明します。プログラムのメインウィンドウで動作し、データを表示するための複数のバッファを持つ標準指標を操作するためのライブラリクラスを準備します。
preview
データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

データサイエンスと機械学習(第13回):主成分分析(PCA)で金融市場分析を改善する

主成分分析(Principal component analysis、PCA)で金融市場分析に革命を起こしましょう。この強力な手法がどのようにデータの隠れたパターンを解き放ち、潜在的な市場動向を明らかにし、投資戦略を最適化するかをご覧ください。この記事では、PCAが複雑な金融データを分析するための新しいレンズをどのように提供できるかを探り、従来のアプローチでは見逃されていた洞察を明らかにします。金融市場データにPCAを適用することで競争力を高め、時代を先取りする方法をご覧ください。
preview
MQL5のインタラクティブGUIで取引チャートを改善する(第2回):移動可能なGUI (II)

MQL5のインタラクティブGUIで取引チャートを改善する(第2回):移動可能なGUI (II)

MQL5で移動可能なGUIを作成するための詳細なガイドで、取引戦略やユーティリティでの動的なデータ表現の可能性を引き出しましょう。オブジェクト指向プログラミングの基本原理を理解し、同じチャート上に単一または複数の移動可能なGUIを簡単かつ効率的に設計実装する方法を発見してください。
DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト
DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト

DoEasyライブラリの時系列(第59部): 単一ティックのデータを格納するオブジェクト

本稿からは、価格データを処理するライブラリ機能を作成します。今日、さらに別のティックで到着したすべての価格データを格納するオブジェクトクラスを作成します。
preview
MQL5の圏論(第1回)

MQL5の圏論(第1回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQLコミュニティではまだ比較的知られていない分野です。この連載では、その概念のいくつかを紹介して考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
母集団最適化アルゴリズム:ハーモニーサーチ(HS)

母集団最適化アルゴリズム:ハーモニーサーチ(HS)

今回は、完璧な音のハーモニーを見つける過程に着想を得た、最も強力な最適化アルゴリズムであるハーモニーサーチ(HS)を研究し、検証してみます。私たちの評価でトップになるのはどのアルゴリズムでしょうか。
preview
プライスアクション分析ツールキットの開発(第19回):ZigZag Analyzer

プライスアクション分析ツールキットの開発(第19回):ZigZag Analyzer

すべてのプライスアクショントレーダーは、トレンドを確認し、転換点や継続の可能性があるレベルを見つけるために、トレンドラインを手動で使用します。本連載では、市場分析を簡単にするために、傾斜トレンドラインを描画することに特化したツールを紹介します。このツールは、トレーダーが効果的なプライスアクション評価に不可欠な主要トレンドとレベルを明確に示すことで、分析プロセスを簡素化します。
preview
一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

この記事では、Chart Tradeをフローティングウィンドウに配置します。前稿では、フローティングウィンドウ内でテンプレートを使用できるようにする基本的なシステムを作成しました。
preview
時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト

時系列マイニングのためのデータラベル(第5回):ソケットを使用したEAへの応用とテスト

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
初心者のためのMetaTrader 5とRによるアルゴリズム取引

初心者のためのMetaTrader 5とRによるアルゴリズム取引

RとMetaTrader 5をシームレスに統合する技術を解き明かしながら、金融分析とアルゴリズム取引が出会う魅力的な探求に乗り出しましょう。この記事は、MetaTrader 5の強力な取引機能とRの精巧な分析の領域を橋渡しするためのガイドです。
DoEasyライブラリのグラフィックス(第84部): 抽象標準グラフィカルオブジェクトの子孫クラス
DoEasyライブラリのグラフィックス(第84部): 抽象標準グラフィカルオブジェクトの子孫クラス

DoEasyライブラリのグラフィックス(第84部): 抽象標準グラフィカルオブジェクトの子孫クラス

本稿では、ターミナル抽象標準グラフィカルオブジェクトの子孫オブジェクトの作成について検討します。クラスオブジェクトでは、すべてのグラフィカルオブジェクトに共通のプロパティを記述します。つまり、それは単にある種のグラフィカルオブジェクトです。実際のグラフィカルオブジェクトとの関係を明確にするには、この特定のグラフィカルオブジェクトに固有のプロパティを子孫オブジェクトクラスに設定する必要があります。
preview
MQL5の圏論(第2回)

MQL5の圏論(第2回)

圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティではまだ比較的知られていません。この連載では、その概念のいくつかを紹介し、考察することで、コメントや議論を呼び起こし、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
preview
独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

独自のLLMをEAに統合する(第5部):LLMs(II)-LoRA-チューニングによる取引戦略の開発とテスト

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニング(微調整)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント

MQL5の圏論(第13回):データベーススキーマを使用したカレンダーイベント

この記事は、MQL5での順序の圏論実装に従うもので、MQL5での分類のためにデータベーススキーマをどのように組み込むことができるかを検討します。取引関連のテキスト(文字列)情報を特定する際に、データベーススキーマの概念を圏論とどのように組み合わせることができるかの基礎を見ていきます。カレンダーイベントが中心です。
preview
Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。
preview
ニューラルネットワークが簡単に(第38回):不一致による自己監視型探索

ニューラルネットワークが簡単に(第38回):不一致による自己監視型探索

強化学習における重要な問題のひとつは、環境探索です。前回までに、「内因性好奇心」に基づく研究方法について見てきました。今日は別のアルゴリズムを見てみましょう。不一致による探求です。
preview
MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ

この記事では、MQL5のネイティブMQTTクライアント開発における最初の試みについて報告します。MQTTは、クライアントサーバーのパブリッシュ/サブスクライブメッセージングトランスポートプロトコルです。MQTTは軽量、オープン、シンプルで、簡単に実装できるように設計されています。これらの特性により、さまざまな状況での使用に最適です。
preview
一からの取引エキスパートアドバイザーの開発(第23部):新規受注システム(IV)

一からの取引エキスパートアドバイザーの開発(第23部):新規受注システム(IV)

受注システムをより柔軟にします。ここでは、コードをより柔軟にする変更を検討して、ポジションストップレベルをより迅速に変更できるようにします。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、PERIOD_M15からPERIOD_D1までの多時間枠でパラボリックSARまたはiSARという1つの指標のみを使用します。
preview
DoEasyライブラリの時系列(パート53):抽象基本指標クラス

DoEasyライブラリの時系列(パート53):抽象基本指標クラス

本稿では抽象指標を作成し、ライブラリの標準指標とカスタム指標のオブジェクトを作成するための基本クラスとしてさらに使用します。
preview
MQL5における修正グリッドヘッジEA(第1部):シンプルなヘッジEAを作る

MQL5における修正グリッドヘッジEA(第1部):シンプルなヘッジEAを作る

古典的なグリッド戦略と古典的なヘッジ戦略を混合した、より高度なグリッドヘッジEAのベースとして、シンプルなヘッジEAを作成する予定です。この記事が終わるころには、簡単なヘッジ戦略の作り方がわかり、この戦略が本当に100%儲かるかどうかについての人々の意見も知ることができるでしょう。
preview
データサイエンスと機械学習(第18回):市場複雑性を極める戦い - 打ち切りSVD v.s. NMF

データサイエンスと機械学習(第18回):市場複雑性を極める戦い - 打ち切りSVD v.s. NMF

打ち切り特異値分解(Truncated SVD)と非負行列因子分解(NMF)は次元削減技法です。両者とも、データ主導の取引戦略を形成する上で重要な役割を果たしています。次元削減、洞察の解明、定量分析の最適化など、複雑な金融市場をナビゲートするための情報満載のアプローチをご覧ください。
preview
MQL5における拡張ディッキー–フラー検定の実装

MQL5における拡張ディッキー–フラー検定の実装

本稿では、拡張ディッキー–フラー検定の実装を示し、Engle-Granger法を用いた共和分検定に適用します。
preview
ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング

ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング

クラスタリング法について引き続き検討します。今回は、最も一般的なk-meansクラスタリング手法の1つを実装するために、新しいCKmeansクラスを作成します。テスト中には約500のパターンを識別することができました。
preview
オブジェクトを使用して複雑な指標を簡単に

オブジェクトを使用して複雑な指標を簡単に

この記事では、複数のプロットやバッファを扱ったり複数のソースからのデータを組み合わせたりするときに発生する問題を回避しながら、複雑な指標を作成する方法を紹介します。
preview
DoEasy-コントロール(第17部):オブジェクトの非表示部分の切り取り、補助矢印ボタンのWinFormsオブジェクト

DoEasy-コントロール(第17部):オブジェクトの非表示部分の切り取り、補助矢印ボタンのWinFormsオブジェクト

この記事では、コンテナの外側にあるオブジェクトセクションを非表示にする機能を作成します。また、他のWinFormsオブジェクトの一部として使用する補助矢印ボタンオブジェクトを作成します。
preview
データサイエンスとML(第32回):AIモデルを最新の状態に保つ、オンライン学習

データサイエンスとML(第32回):AIモデルを最新の状態に保つ、オンライン学習

常に変化する取引の世界では、市場の変動に適応することは選択肢ではなく、必要不可欠です。新たなパターンやトレンドが日々生まれる中で、最先端の機械学習モデルでさえ、進化する環境に対応し続けることが困難になっています。本記事では、モデルを自動的に再訓練することで、その有効性を維持し、新しい市場データに柔軟に適応させる方法を解説します。
DoEasyライブラリの時系列(第44部): 指標バッファオブジェクトのコレクションクラス
DoEasyライブラリの時系列(第44部): 指標バッファオブジェクトのコレクションクラス

DoEasyライブラリの時系列(第44部): 指標バッファオブジェクトのコレクションクラス

この記事では、指標バッファオブジェクトのコレクションクラスの作成について説明しています。指標用の任意の数のバッファを作成して操作する機能をテストします(MQL指標で作成できるバッファの最大数は512です)。
preview
自動で動くEAを作る(第14回):自動化(VI)

自動で動くEAを作る(第14回):自動化(VI)

今回は、この連載で得た知識をすべて実践してみましょう。最終的には、100%自動化された機能的なシステムを構築します。しかしその前に、まだ最後の詳細を学ばなければなりません。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第7回):オーサムオシレーターシグナルを持つジグザグ

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第7回):オーサムオシレーターシグナルを持つジグザグ

この記事の多通貨エキスパートアドバイザー(EA)は、オーサムオシレーター(AO、Awesome Oscillator)でフィルタされたジグザグ(ZigZag)指標を使用するまたは互いのシグナルをフィルタするEA(自動売買)です。
preview
一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)

一からの取引エキスパートアドバイザーの開発(第17部):Web上のデータにアクセスする(III)

今回は、Webからデータを取得し、エキスパートアドバイザー(EA)で使用する方法について引き続き考えていきます。今回は、代用できるシステムの開発に進みます。
DoEasyライブラリのグラフィックス(第91部): 標準グラフィカルオブジェクトのイベントオブジェクト名変更履歴
DoEasyライブラリのグラフィックス(第91部): 標準グラフィカルオブジェクトのイベントオブジェクト名変更履歴

DoEasyライブラリのグラフィックス(第91部): 標準グラフィカルオブジェクトのイベントオブジェクト名変更履歴

本稿では、ライブラリベースのプログラムからグラフィカルオブジェクトイベントを制御するための基本的な機能を洗練します。例として、「オブジェクト名」プロパティを使用してグラフィカルオブジェクトの変更履歴を保存する機能の実装から始めます。
preview
時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する

時系列マイニングのためのデータラベル(第2回):Pythonを使ってトレンドマーカー付きデータセットを作成する

この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、いくつかの時系列のラベル付け方法を紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
preview
手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する

手動バックテストを簡単に:MQL5でストラテジーテスター用のカスタムツールキットを構築する

この記事では、ストラテジーテスターでの手動バックテストを簡単におこなうための、カスタムMQL5ツールキットの設計について紹介します。設計と実装に焦点を当て、特にインタラクティブな取引操作の仕組みについて詳しく解説します。その後、このツールキットを使って、戦略を効果的にテストする方法を実演します。
preview
多銘柄多期間指標の作成

多銘柄多期間指標の作成

この記事では、多銘柄、多期間の指標を作成する原則について見ていきます。また、エキスパートアドバイザー(EA)や他の指標から、このような指標のデータにアクセスする方法も紹介します。EAや指標でマルチ指標を使用する主な特徴について考察し、カスタム指標バッファを使用してそれらをプロットする方法を見ていきます。
preview
MQL5でのARIMAトレーニングアルゴリズムの実装

MQL5でのARIMAトレーニングアルゴリズムの実装

この記事では、関数最小化のPowell法を使用して、ボックス・ジェンキンス法の自己回帰和分移動平均モデルを適用するアルゴリズムを実装します。ボックスとジェンキンスは、ほとんどの時系列は2つのフレームワークの一方または両方でモデル化できると述べました。
preview
DoEasy - コントロール(第8部):カテゴリ(GroupBoxおよびCheckBoxのコントロール)による基本WinFormsオブジェクト

DoEasy - コントロール(第8部):カテゴリ(GroupBoxおよびCheckBoxのコントロール)による基本WinFormsオブジェクト

この記事では、「GroupBox」および「CheckBox」WinFormsオブジェクトの作成、およびWinFormsオブジェクトカテゴリの基本オブジェクトの開発について検討します。作成されたすべてのオブジェクトはまだ静的で、マウスと対話することはできません。
preview
多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

取引戦略にはさまざまなものがあります。リスクを分散し、取引結果の安定性を高めるためには、複数の戦略を並行して適用することが有効かもしれません。ただし、それぞれのストラテジーが個別のエキスパートアドバイザー(EA)として実装されている場合、1つの取引口座でそれらの作業を管理することは非常に難しくなります。この問題を解決するのに合理的なのは、1つのEAで異なる取引戦略の運用を実装することです。