Einen Expert Advisor von Grund auf entwickeln (Teil 30): CHART TRADE als Indikator?
Heute werden wir wieder Chart Trade verwenden, aber dieses Mal wird es ein On-Chart-Indikator sein, der auf dem Chart laufen kann oder auch nicht.
ONNX-Modelle in Klassen packen
Die objektorientierte Programmierung ermöglicht die Erstellung eines kompakteren Codes, der leicht zu lesen und zu ändern ist. Hier sehen wir uns das Beispiel für drei ONNX-Modelle an.
Entwicklung eines Roboters in Python und MQL5 (Teil 1): Vorverarbeitung der Daten
Entwicklung eines auf maschinellem Lernen basierenden Handelsroboters: Ein detaillierter Leitfaden. Der erste Artikel in dieser Reihe befasst sich mit der Erfassung und Aufbereitung von Daten und Merkmalen. Das Projekt wird unter Verwendung der Programmiersprache Python und der Bibliotheken sowie der Plattform MetaTrader 5 umgesetzt.
PrintFormat() studieren und vorgefertigte Beispiele anwenden
Der Artikel ist sowohl für Anfänger als auch für erfahrene Entwickler nützlich. Wir werden uns die Funktion PrintFormat() ansehen, Beispiele für die Formatierung von Zeichenketten analysieren und Vorlagen für die Anzeige verschiedener Informationen im Terminalprotokoll schreiben.
Neuronale Netze leicht gemacht (Teil 27): Tiefes Q-Learning (DQN)
Wir studieren weiterhin das Verstärkungslernen, das Reinforcement Learning. In diesem Artikel werden wir uns mit der Methode des Deep Q-Learning vertraut machen. Mit dieser Methode hat das DeepMind-Team ein Modell geschaffen, das einen Menschen beim Spielen von Atari-Computerspielen übertreffen kann. Ich denke, es wird nützlich sein, die Möglichkeiten der Technologie zur Lösung von Handelsproblemen zu bewerten.
Modifizierter Grid-Hedge EA in MQL5 (Teil I): Erstellung eines einfachen Hedge EA
Wir werden einen einfachen Hedge EA als Basis für unseren fortgeschritteneren Grid-Hedge EA erstellen, der eine Mischung aus klassischen Grid- und klassischen Hedge-Strategien sein wird. Am Ende dieses Artikels werden Sie wissen, wie Sie eine einfache Hedge-Strategie erstellen können, und Sie werden auch erfahren, was die Leute darüber sagen, ob diese Strategie wirklich zu 100 % profitabel ist.
Entwicklung einer DLL für eine Machbarkeitsstudie mit C++ Multi-Threading-Unterstützung für MetaTrader 5 unter Linux
Wir beginnen die Reise, um die Schritte und den Arbeitsablauf zu erforschen, wie man die Entwicklung für die MetaTrader 5 Plattform ausschließlich auf einem Linux-System basiert, in dem das Endprodukt nahtlos sowohl auf Windows- als auch auf Linux-Systemen funktioniert. Wir werden Wine und Mingw kennenlernen; beides sind die wichtigsten Werkzeuge für die plattformübergreifende Entwicklung. Vor allem Mingw für seine Threading-Implementierungen (POSIX und Win32), die wir bei der Auswahl der Software berücksichtigen müssen. Anschließend erstellen wir eine Proof-of-Concept-DLL und verwenden sie in MQL5-Code, um schließlich die Leistung der beiden Threading-Implementierungen zu vergleichen. Alles als eine Grundlage, die Sie selbst weiter ausbauen können. Nach der Lektüre dieses Artikels sollten Sie mit der Erstellung von MT-bezogenen Tools unter Linux vertraut sein.
Andere Klassen in der Bibliothek DoEasy (Teil 70): Erweiterte Funktionalität und automatisches Aktualisieren der Kollektion der Chartobjekte
In diesem Artikel werde ich die Funktionalität von Chartobjekten erweitern und die Navigation durch Charts, die Erstellung von Screenshots sowie das Speichern und Anwenden von Vorlagen auf Charts einrichten. Außerdem werde ich die automatische Aktualisierung der Kollektion von Chartobjekten, ihrer Fenster und der Indikatoren darin implementieren.
Mehrere Indikatoren in einem Chart (Teil 06): Umwandlung des MetaTrader 5 in ein RAD-System (II)
In meinem letzten Artikel habe ich Ihnen gezeigt, wie man einen Chart Trade mit MetaTrader 5 Objekten erstellt und so die Plattform in ein RAD-System verwandelt. Das System funktioniert sehr gut, und sicher haben viele der Leser über die Erstellung einer Bibliothek nachgedacht, die es ermöglichen würde, die Funktionsweise des vorgeschlagenen Systems zu erweitern. Auf dieser Grundlage wäre es möglich, einen intuitiveren Expert Advisor mit einer schöneren und einfacher zu bedienenden Oberfläche zu entwickeln.
Erstellen eines Ticker-Panels: Verbesserte Version
Was halten Sie von der Idee, die Grundversion unseres Ticker-Panels wiederzubeleben? Als Erstes werden wir das Panel so ändern, dass wir ein Bild hinzufügen können, z. B. ein Anlagenlogo oder ein anderes Bild, damit der Nutzer das angezeigte Logo schnell und einfach identifizieren kann.
Implementierung des Augmented Dickey Fuller-Tests in MQL5
In diesem Artikel demonstrieren wir die Implementierung des Augmented Dickey-Fuller-Tests und wenden ihn zur Durchführung von Kointegrationstests mit der Engle-Granger-Methode an.
Charts interessanter machen: Hinzufügen eines Hintergrunds
Viele Arbeitsplätze enthalten ein repräsentatives Bild, das etwas über den Benutzer aussagt. Diese Bilder machen die Arbeitsumgebung schöner und spannender. Sehen wir uns an, wie man die Charts durch Hinzufügen eines Hintergrunds interessanter gestalten kann.
Ein Beispiel für die Zusammenstellung von ONNX-Modellen in MQL5
ONNX (Open Neural Network eXchange) ist ein offenes Format zur Darstellung neuronaler Netze. In diesem Artikel zeigen wir Ihnen, wie Sie zwei ONNX-Modelle gleichzeitig in einem Expert Advisor verwenden können.
Monte Carlo Permutationstests im MetaTrader 5
In diesem Artikel sehen wir uns an, wie wir Permutationstests auf der Grundlage von vermischten Tick-Daten für jeden Expert Advisor durchführen können, der nur Metatrader 5 verwendet.
Anzeige historischer Positionen auf dem Chart als deren Gewinn/Verlust-Diagramm
In diesem Artikel werde ich die Möglichkeit erörtern, Informationen über geschlossene Positionen auf der Grundlage ihrer Handelshistorie zu erhalten. Außerdem werde ich einen einfachen Indikator erstellen, der den ungefähren Gewinn/Verlust der Positionen auf jedem Balken als Diagramm anzeigt.
Grafiken in der Bibliothek DoEasy (Teil 73): Das Formularobjekt eines grafischen Elements
Der Artikel erschließt einen neuen großen Bereich der Bibliothek für die Arbeit mit Grafiken. Im aktuellen Artikel werde ich das Mausstatusobjekt, das Basisobjekt aller grafischen Elemente und die Klasse des Formularobjekts der Bibliothek grafische Elemente erstellen.
Entwicklung eines Handelsroboters in Python (Teil 3): Implementierung eines modellbasierten Handelsalgorithmus
Wir setzen die Serie von Artikeln über die Entwicklung eines Handelsroboters in Python und MQL5 fort. In diesem Artikel werden wir einen Handelsalgorithmus in Python erstellen.
Zeitreihen in der Bibliothek DoEasy (Teil 36): Objekt der Zeitreihe für alle verwendeten Symbolperioden
In diesem Artikel werden wir uns überlegen, die Listen der Bar-Objekte für jede verwendete Symbolperiode zu einem einzigen Symbol-Zeitreihen-Objekt zusammenzufassen. Auf diese Weise wird jedes Symbol ein Objekt haben, das die Listen aller verwendeten Symbolzeitreihen-Perioden speichert.
Andere Klassen in der Bibliothek DoEasy (Teil 68): Die Chartfenster-Objektklasse und die Indikator-Objektklassen im Chartfenster
In diesem Artikel werde ich die Entwicklung der Chart-Objektklasse fortsetzen. Ich werde die Liste der Chart-Objekte hinzufügen, die Listen mit den verfügbaren Indikatoren hat.
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 01): Regressionsanalyse
Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Dies legt eindeutig einen hohen Stellenwert auf die Zeit des Händlers und die Notwendigkeit, Fehler zu vermeiden. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte. Warum? Denn der Händler spart nicht nur Zeit, indem er seine neuen Ideen mit dem MQL5-Assistenten zusammenstellt, und reduziert Fehler durch doppelte Codierung erheblich. Er ist letztendlich so eingestellt, dass er seine Energie auf die wenigen kritischen Bereiche seiner Handelsphilosophie konzentriert.
Hilfen zur Auswahl und Navigation in MQL5 und MQL4: Tabs für "Hausaufgaben" und das Sichern grafischer Objekte
In diesem Artikel werden wir die Fähigkeiten des zuvor erstellten Hilfsprogramms erweitern, indem wir Tabs (Registerkarten) zur Auswahl der benötigten Symbole hinzufügen. Wir werden auch lernen, wie man grafische Objekte, die wir erstellt haben, auf dem spezifischen Symboldiagramm speichert, damit wir sie nicht ständig neu erstellen müssen. Außerdem erfahren wir, wie man nur mit Symbolen arbeitet, die zuvor über eine bestimmte Website ausgewählt wurden.
Datenwissenschaft und maschinelles Lernen (Teil 02): Logistische Regression
Die Klassifizierung von Daten ist für einen Algo-Händler und einen Programmierer von entscheidender Bedeutung. In diesem Artikel werden wir uns auf einen logistischen Klassifizierungsalgorithmus konzentrieren, der uns wahrscheinlich helfen kann, die Ja- oder Nein-Stimmen, die Höhen und Tiefen, Käufe und Verkäufe zu identifizieren.
Datenkennzeichnung für Zeitreihenanalyse (Teil 2): Datensätze mit Trendmarkern mit Python erstellen
In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
Erstellen eines EA, der automatisch funktioniert (Teil 10): Automatisierung (II)
Automatisierung bedeutet nichts, wenn Sie den Zeitplan nicht kontrollieren können. Kein Arbeitnehmer kann effizient sein, wenn er 24 Stunden am Tag arbeitet. Viele sind jedoch der Meinung, dass ein automatisiertes System 24 Stunden am Tag funktionieren sollte. Aber es ist immer gut, eine Möglichkeit zu haben, einen Arbeitsbereich für den EA festzulegen. In diesem Artikel geht es darum, wie man einen solchen Zeitbereich richtig festlegt.
Adaptive Indikatoren
In diesem Artikel werde ich mehrere mögliche Ansätze zur Erstellung adaptiver Indikatoren betrachten. Adaptive Indikatoren zeichnen sich durch das Vorhandensein einer Rückkopplung zwischen den Werten der Eingangs- und Ausgangssignale aus. Diese Rückkopplung ermöglicht es dem Indikator, sich selbständig auf die optimale Verarbeitung von finanziellen Zeitreihenwerten einzustellen.
Alan Andrews und seine Methoden der Zeitreihenanalyse
Alan Andrews ist einer der berühmtesten „Ausbilder“ der modernen Welt auf dem Gebiet des Handels. Seine „pitchfork“ (Heugabel) ist in fast allen modernen Kursanalyseprogrammen enthalten. Doch die meisten Händler nutzen nicht einmal einen Bruchteil der Möglichkeiten, die dieses Instrument bietet. Im Übrigen enthält der ursprüngliche Lehrgang von Andrews nicht nur eine Beschreibung der Heugabel (obwohl sie das Hauptwerkzeug bleibt), sondern auch einiger anderer nützlicher Konstruktionen. Der Artikel gibt einen Einblick in die wunderbaren Methoden der Chartanalyse, die Andrews in seinem ursprünglichen Kurs lehrte. Achtung, es wird viele Bilder geben.
Anwendung von OLAP im Handel (Teil 4): Quantitative und visuelle Analyse der Testberichte
Der Artikel bietet grundlegende Werkzeuge für die OLAP-Analyse von Testberichten in Bezug auf einzelne Durchläufe und Optimierungsergebnisse. Das Werkzeug kann mit Dateien im Standardformat (tst und opt) arbeiten und bietet auch eine grafische Schnittstelle. MQL-Quellcodes sind unten angefügt.
Zeitreihen in der Bibliothek DoEasy (Teil 48): Mehrperioden-Multisymbol-Indikatoren mit einem Puffer in einem Unterfenster
Der Artikel betrachtet ein Beispiel für die Erstellung von Mehrsymbol- und Mehrperioden-Standardindikatoren unter Verwendung eines einzigen Indikator-Puffers für die Konstruktion und die Darstellung im Indikator-Unterfenster. Ich werde die Bibliotheksklassen auf die Arbeit mit Standardindikatoren vorbereiten, die im Hauptfenster des Programms arbeiten und mehr als einen Puffer für die Anzeige ihrer Daten haben.
Kometenschweif-Algorithmus (CTA)
In diesem Artikel befassen wir uns mit der Optimierungsalgorithmus nach dem Kometenschweif (Comet Tail Optimization Algorithm, CTA), der sich von einzigartigen Weltraumobjekten inspirieren lässt - von Kometen und ihren beeindruckenden Schweifen, die sich bei der Annäherung an die Sonne bilden. Der Algorithmus basiert auf dem Konzept der Bewegung von Kometen und ihren Schweifen und ist darauf ausgelegt, optimale Lösungen für Optimierungsprobleme zu finden.
Andere Klassen in der Bibliothek DoEasy (Teil 69): Kollektionsklasse der Chart-Objekte
Mit diesem Artikel beginne ich die Entwicklung der Kollektionsklasse der Chart-Objekt. Die Klasse wird die Kollektionsliste der Chart-Objekte mit ihren Unterfenstern und Indikatoren speichern und die Möglichkeit bieten, mit beliebigen ausgewählten Charts und ihren Unterfenstern oder mit einer Liste von mehreren Charts gleichzeitig zu arbeiten.
Datenwissenschaft und maschinelles Lernen (Teil 06): Gradientenverfahren
Der Gradientenverfahren spielt eine wichtige Rolle beim Training neuronaler Netze und vieler Algorithmen des maschinellen Lernens. Es handelt sich um einen schnellen und intelligenten Algorithmus, der trotz seiner beeindruckenden Arbeit von vielen Datenwissenschaftlern immer noch missverstanden wird - sehen wir uns an, worum es geht.
Grafik in der Bibliothek DoEasy (Teil 77): Objektklasse der Schatten
In diesem Artikel werde ich eine separate Klasse für das Schattenobjekt erstellen, das ein Nachkomme des grafischen Elementobjekts ist, und die Möglichkeit hinzufügen, den Objekthintergrund mit einem Farbverlauf zu füllen.
Erstellen eines EA, der automatisch funktioniert (Teil 14): Automatisierung (VI)
In diesem Artikel werden wir das gesamte Wissen aus dieser Serie in die Praxis umsetzen. Wir werden endlich ein 100%ig automatisiertes und funktionierendes System aufbauen. Aber vorher müssen wir noch ein letztes Detail klären.
Lernen Sie, wie man ein Handelssystem mit dem Awesome Oscillator entwickelt
In diesem neuen Artikel unserer Serie werden wir ein neues technisches Instrument kennenlernen, das für unseren Handel nützlich sein kann: den Indikator Awesome Oscillator (AO). Wir werden lernen, wie man mit diesem Indikator ein Handelssystem entwickeln kann.
Verbessern Sie Ihre Handelscharts durch interaktiven GUI's in MQL5 (Teil II): Ein bewegliches GUI (II)
Erschließen Sie das Potenzial der dynamischen Datendarstellung in Ihren Handelsstrategien und Dienstprogrammen mit unserer ausführlichen Anleitung zur Erstellung beweglicher GUIs in MQL5. Tauchen Sie ein in die grundlegenden Prinzipien der objektorientierten Programmierung und entdecken Sie, wie Sie mit Leichtigkeit und Effizienz einzelne oder mehrere bewegliche GUIs auf demselben Diagramm entwerfen und implementieren können.
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 25): Herstellen eines robusten Systems (II)
In diesem Artikel werden wir den letzten Schritt zu einem schnellen EA machen. Machen Sie sich also auf eine längere Lektüre gefasst. Um unseren Expert Advisor zuverlässig zu machen, werden wir zunächst alles aus dem Code entfernen, was nicht Teil des Handelssystems ist.
Zeitreihen in der Bibliothek DoEasy (Teil 51): Zusammengesetzte Standardindikatoren für mehrere Symbole und Perioden
Der Artikel vervollständigt die Entwicklung von Objekten der Standardindikatoren für mehrere Symbole und Perioden. Anhand des Standardindikators Ichimoku Kinko Hyo analysieren wir beispielsweise die Erstellung von zusammengesetzten, nutzerdefinierten Indikatoren, die über gezeichnete Hilfspuffer zur Anzeige von Daten auf dem Chart verfügen.
Neuronale Netze leicht gemacht (Teil 14): Datenclustering
Es ist mehr als ein Jahr her, dass ich meinen letzten Artikel veröffentlicht habe. Das ist eine ganze Menge Zeit, um Ideen zu überarbeiten und neue Ansätze zu entwickeln. In dem neuen Artikel möchte ich von der bisher verwendeten Methode des überwachten Lernens abweichen. Diesmal werden wir uns mit Algorithmen des unüberwachten Lernens beschäftigen. Wir werden insbesondere einen der Clustering-Algorithmen - K-Means - betrachten.
Preise in der DoEasy-Bibliothek (Teil 63): Markttiefe und deren abstrakte Anforderungsklasse
In diesem Artikel werde ich mit der Entwicklung der Funktionalität für die Arbeit mit der Markttiefe (Depth of Market, DOM) beginnen. Ich werde auch die Klasse des abstrakten Objekts der Markttiefe und seine Nachkommen erstellen.
Aufbau und Test von Keltner-Kanal-Handelssystemen
In diesem Artikel werden wir versuchen, Handelssysteme anzubieten, die ein sehr wichtiges Konzept auf dem Finanzmarkt verwenden, nämlich die Volatilität. Wir werden ein Handelssystem auf der Grundlage des Keltner-Kanal-Indikators bereitstellen, nachdem wir ihn verstanden haben und wissen, wie wir ihn kodieren können und wie wir ein Handelssystem auf der Grundlage einer einfachen Handelsstrategie erstellen und es dann an verschiedenen Vermögenswerten testen können.