Artikel über das Programmieren in MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
Grafiken in der Bibliothek DoEasy (Teil 94): Bewegen und Löschen zusammengesetzter grafischer Objekte
Grafiken in der Bibliothek DoEasy (Teil 94): Bewegen und Löschen zusammengesetzter grafischer Objekte

Grafiken in der Bibliothek DoEasy (Teil 94): Bewegen und Löschen zusammengesetzter grafischer Objekte

In diesem Artikel werde ich mit der Entwicklung verschiedener Ereignisse für zusammengesetzte grafische Objekte beginnen. Teilweise werden wir auch das Verschieben und Löschen eines zusammengesetzten grafischen Objekts betrachten. In der Tat werde ich hier eine Feinabstimmung der Dinge vornehmen, die ich im vorherigen Artikel implementiert habe.
preview
Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)

Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)

Im vorigen Artikel haben wir relationale Modelle erörtert, die in ihrer Architektur Aufmerksamkeitsmechanismen verwenden. Eines der besonderen Merkmale dieser Modelle ist die intensive Nutzung von Computerressourcen. In diesem Artikel wird einer der Mechanismen zur Verringerung der Anzahl von Rechenoperationen innerhalb des Self-Attention-Blocks betrachtet. Dadurch wird die allgemeine Leistung des Modells erhöht.
preview
Neuronale Netze leicht gemacht (Teil 64): Die Methode konservativ gewichtetes Klonen von Verhaltensweisen (CWBC)

Neuronale Netze leicht gemacht (Teil 64): Die Methode konservativ gewichtetes Klonen von Verhaltensweisen (CWBC)

Aufgrund von Tests, die in früheren Artikeln durchgeführt wurden, kamen wir zu dem Schluss, dass die Optimalität der trainierten Strategie weitgehend von der verwendeten Trainingsmenge abhängt. In diesem Artikel werden wir uns mit einer relativ einfachen, aber effektiven Methode zur Auswahl von Trajektorien für das Training von Modellen vertraut machen.
preview
Entwicklung eines Replay System (Teil 32): Auftragssystem (I)

Entwicklung eines Replay System (Teil 32): Auftragssystem (I)

Von allen Dingen, die wir bisher entwickelt haben, ist dieses System, wie Sie wahrscheinlich bemerken und letztendlich zustimmen werden, das komplexeste. Nun müssen wir etwas sehr Einfaches tun: unser System soll den Betrieb eines Handelsservers simulieren. Die Notwendigkeit, die Funktionsweise des Handelsservers genau zu implementieren, scheint eine Selbstverständlichkeit zu sein. Zumindest in Worten. Aber wir müssen dies so tun, dass alles nahtlos und transparent für den Nutzer des Wiedergabe-/Simulationssystems ist.
preview
DoEasy. Steuerung (Teil 17): Beschneiden unsichtbarer Objektteile, Hilfspfeiltasten WinForms-Objekte

DoEasy. Steuerung (Teil 17): Beschneiden unsichtbarer Objektteile, Hilfspfeiltasten WinForms-Objekte

In diesem Artikel werde ich die Funktionalität zum Ausblenden von Objektabschnitten, die sich außerhalb ihrer Container befinden, erstellen. Außerdem werde ich zusätzliche Pfeiltastenobjekte erstellen, die als Teil anderer WinForms-Objekte verwendet werden können.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 14): Die Geburt des SIMULATORS (IV)

Entwicklung eines Replay Systems — Marktsimulation (Teil 14): Die Geburt des SIMULATORS (IV)

In diesem Artikel werden wir die Entwicklungsphase des Simulators fortsetzen. Diesmal werden wir sehen, wie wir eine Bewegung vom Typ RANDOM WALK effektiv erstellen können. Diese Art von Bewegung ist sehr interessant, denn sie bildet die Grundlage für alles, was auf dem Kapitalmarkt geschieht. Darüber hinaus werden wir beginnen, einige Konzepte zu verstehen, die für die Durchführung von Marktanalysen grundlegend sind.
preview
Trailing-Stopp im Handel

Trailing-Stopp im Handel

In diesem Artikel befassen wir uns mit der Verwendung eines Trailing-Stops beim Handel. Wir werden bewerten, wie nützlich und wirksam das ist und wie es genutzt werden kann. Die Effizienz eines Trailing-Stopps hängt weitgehend von der Preisvolatilität und der Wahl des Stop-Loss-Niveaus ab. Für die Festlegung eines Stop-Loss können verschiedene Ansätze verwendet werden.
preview
Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 2): Zusammenführung integrierter Indikatoren

Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 2): Zusammenführung integrierter Indikatoren

In diesem Artikel geht es darum, die Vorteile der im MetaTrader 5 integrierten Indikatoren zu nutzen, um Signale abseits eines Trends zu erkennen. In Fortführung des vorherigen Artikels werden wir untersuchen, wie wir unsere Idee mit Hilfe von MQL5-Code in das endgültige Programm übertragen können.
preview
DoEasy. Steuerung (Teil 14): Neuer Algorithmus zur Benennung von grafischen Elementen. Fortsetzung der Arbeit am TabControl WinForms Objekt

DoEasy. Steuerung (Teil 14): Neuer Algorithmus zur Benennung von grafischen Elementen. Fortsetzung der Arbeit am TabControl WinForms Objekt

In diesem Artikel werde ich einen neuen Algorithmus für die Benennung aller grafischen Elemente erstellen, die für die Erstellung von nutzerdefinierten Grafiken gedacht sind, sowie die Entwicklung des TabControl WinForms Objekts fortsetzen.
preview
DoEasy. Steuerung (Teil 18): Funktionsweise für scrollende Registerkarten in TabControl

DoEasy. Steuerung (Teil 18): Funktionsweise für scrollende Registerkarten in TabControl

In diesem Artikel werde ich die Schaltflächen der Kopfzeilen-Scroll-Steuerung im TabControl WinForms-Objekt platzieren, für den Fall, dass die Kopfzeile nicht in die Größe des Steuerelements passt. Außerdem werde ich die Verschiebung der Kopfleiste beim Klicken auf die abgeschnittene Registerkartenüberschrift implementieren.
preview
DoEasy. Steuerung (Teil 29): Das Hilfssteuerelement der ScrollBar

DoEasy. Steuerung (Teil 29): Das Hilfssteuerelement der ScrollBar

In diesem Artikel werde ich mit der Entwicklung des ScrollBar-Hilfssteuerelements und seiner abgeleiteten Objekte beginnen — vertikale und horizontale Bildlaufleisten. Eine Bildlaufleiste wird verwendet, um den Inhalt des Formulars zu verschieben, wenn er über den Container hinausgeht. Die Bildlaufleisten befinden sich in der Regel am unteren und rechten Rand des Formulars. Die horizontale am unteren Rand blättert den Inhalt nach links und rechts, während die vertikale nach oben und unten blättert.
preview
Integration von ML-Modellen mit dem Strategy Tester (Schlussfolgerung): Implementierung eines Regressionsmodells für die Preisvorhersage

Integration von ML-Modellen mit dem Strategy Tester (Schlussfolgerung): Implementierung eines Regressionsmodells für die Preisvorhersage

Dieser Artikel beschreibt die Implementierung eines Regressionsmodells auf der Grundlage eines Entscheidungsbaums. Das Modell soll die Preise von Finanzanlagen vorhersagen. Wir haben die Daten bereits aufbereitet, das Modell trainiert und evaluiert, sowie angepasst und optimiert. Es ist jedoch wichtig zu beachten, dass dieses Modell nur für Studienzwecke gedacht ist und nicht im realen Handel eingesetzt werden sollte.
preview
Algorithmen zur Optimierung mit Populationen: Der Algorithmus Simulated Isotropic Annealing (SIA). Teil II

Algorithmen zur Optimierung mit Populationen: Der Algorithmus Simulated Isotropic Annealing (SIA). Teil II

Der erste Teil war dem bekannten und beliebten Algorithmus des Simulated Annealing gewidmet. Wir haben ihre Vor- und Nachteile gründlich abgewogen. Der zweite Teil des Artikels ist der radikalen Umgestaltung des Algorithmus gewidmet, die ihn zu einem neuen Optimierungsalgorithmus macht, dem Simulated Isotropic Annealing (SIA).
preview
Neuronale Netze leicht gemacht (Teil 52): Forschung mit Optimismus und Verteilungskorrektur

Neuronale Netze leicht gemacht (Teil 52): Forschung mit Optimismus und Verteilungskorrektur

Da das Modell auf der Grundlage des Erfahrungswiedergabepuffers trainiert wird, entfernt sich die aktuelle Strategie oder Politik des Akteurs immer weiter von den gespeicherten Beispielen, was die Effizienz des Trainings des Modells insgesamt verringert. In diesem Artikel befassen wir uns mit einem Algorithmus zur Verbesserung der Effizienz bei der Verwendung von Stichproben in Algorithmen des verstärkten Lernens.
preview
Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 1): Für EAs und technische Indikatoren

Aufbau eines Modells von Kerzen, Trend und Nebenbedingungen (Teil 1): Für EAs und technische Indikatoren

Dieser Artikel richtet sich an Anfänger und Profi-MQL5-Entwickler. Es stellt einen Code zur Verfügung, um signalgenerierende Indikatoren zu definieren und auf Trends in höheren Zeitrahmen zu beschränken. Auf diese Weise können Händler ihre Strategien verbessern, indem sie eine breitere Marktperspektive einbeziehen, was zu potenziell robusteren und zuverlässigeren Handelssignalen führt.
preview
Grafiken in der DoEasy-Bibliothek (Teil 99): Verschieben eines erweiterten grafischen Objekts mit einem einzigen Steuerpunkt

Grafiken in der DoEasy-Bibliothek (Teil 99): Verschieben eines erweiterten grafischen Objekts mit einem einzigen Steuerpunkt

Im vorigen Artikel habe ich die Möglichkeit implementiert, Angelpunkte eines erweiterten grafischen Objekts mithilfe von Steuerformularen zu verschieben. Jetzt werde ich die Möglichkeit implementieren, ein zusammengesetztes grafisches Objekt mithilfe eines einzelnen grafischen Objektsteuerungspunkts (Formulars) zu verschieben.
preview
Neuronale Netze leicht gemacht (Teil 34): Vollständig parametrisierte Quantilfunktion

Neuronale Netze leicht gemacht (Teil 34): Vollständig parametrisierte Quantilfunktion

Wir untersuchen weiterhin verteilte Q-Learning-Algorithmen. In früheren Artikeln haben wir verteilte und Quantil-Q-Learning-Algorithmen besprochen. Im ersten Algorithmus haben wir die Wahrscheinlichkeiten für bestimmte Wertebereiche trainiert. Im zweiten Algorithmus haben wir Bereiche mit einer bestimmten Wahrscheinlichkeit trainiert. In beiden Fällen haben wir a priori Wissen über eine Verteilung verwendet und eine andere trainiert. In diesem Artikel wenden wir uns einem Algorithmus zu, der es dem Modell ermöglicht, für beide Verteilungen trainiert zu werden.
preview
Neuronale Netze leicht gemacht (Teil 36): Relationales Verstärkungslernen

Neuronale Netze leicht gemacht (Teil 36): Relationales Verstärkungslernen

In den Verstärkungslernmodellen, die wir im vorherigen Artikel besprochen haben, haben wir verschiedene Varianten von Faltungsnetzwerken verwendet, die in der Lage sind, verschiedene Objekte in den Originaldaten zu identifizieren. Der Hauptvorteil von Faltungsnetzen ist die Fähigkeit, Objekte unabhängig von ihrer Position zu erkennen. Gleichzeitig sind Faltungsnetzwerke nicht immer leistungsfähig, wenn es zu verschiedenen Verformungen von Objekten und Rauschen kommt. Dies sind die Probleme, die das relationale Modell lösen kann.
preview
Messen der Information von Indikatoren

Messen der Information von Indikatoren

Maschinelles Lernen hat sich zu einer beliebten Methode für die Strategieentwicklung entwickelt. Während die Maximierung der Rentabilität und der Vorhersagegenauigkeit stärker in den Vordergrund gerückt wurde, wurde der Bedeutung der Verarbeitung der Daten, die zur Erstellung von Vorhersagemodellen verwendet werden, nicht viel Aufmerksamkeit geschenkt. In diesem Artikel befassen wir uns mit der Verwendung des Konzepts der Entropie zur Bewertung der Eignung von Indikatoren für die Erstellung von Prognosemodellen, wie sie in dem Buch Testing and Tuning Market Trading Systems von Timothy Masters dokumentiert sind.
preview
Kombinatorisch symmetrische Kreuzvalidierung in MQL5

Kombinatorisch symmetrische Kreuzvalidierung in MQL5

In diesem Artikel stellen wir die Implementierung der kombinatorisch symmetrischen Kreuzvalidierung in reinem MQL5 vor, um den Grad der Überanpassung nach der Optimierung einer Strategie unter Verwendung des langsamen vollständigen Algorithmus des Strategietesters zu messen.
preview
Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen

Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen

Im Kontext des Verstärkungslernens kann die Prokrastination (Zögern) eines Modells mehrere Ursachen haben. Der Artikel befasst sich mit einigen der möglichen Ursachen für Prokrastination bei Modellen und mit Methoden zu deren Überwindung.
preview
Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands

Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands

Das Training nützlicher Fertigkeiten ohne explizite Belohnungsfunktion ist eine der größten Herausforderungen beim hierarchischen Verstärkungslernen. Zuvor haben wir bereits zwei Algorithmen zur Lösung dieses Problems kennengelernt. Die Frage nach der Vollständigkeit der Umweltforschung bleibt jedoch offen. In diesem Artikel wird ein anderer Ansatz für das Training von Fertigkeiten vorgestellt, dessen Anwendung direkt vom aktuellen Zustand des Systems abhängt.
preview
Quantisierung beim maschinellen Lernen (Teil 1): Theorie, Beispielcode, Analyse der Implementierung in CatBoost

Quantisierung beim maschinellen Lernen (Teil 1): Theorie, Beispielcode, Analyse der Implementierung in CatBoost

Der Artikel befasst sich mit der theoretischen Anwendung der Quantisierung bei der Konstruktion von Baummodellen und stellt die in CatBoost implementierten Quantisierungsmethoden vor. Es werden keine komplexen mathematischen Gleichungen verwendet.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 11): Die Geburt des SIMULATORS (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 11): Die Geburt des SIMULATORS (I)

Um die Daten, die die Balken bilden, nutzen zu können, müssen wir auf das Replay verzichten und einen Simulator entwickeln. Wir werden 1-Minuten-Balken verwenden, weil sie den geringsten Schwierigkeitsgrad aufweisen.
preview
Implementierung eines ARIMA-Trainingsalgorithmus in MQL5

Implementierung eines ARIMA-Trainingsalgorithmus in MQL5

In diesem Artikel wird ein Algorithmus implementiert, der das autoregressive integrierte gleitende Durchschnittsmodell von Box und Jenkins unter Verwendung der Powells-Methode der Funktionsminimierung anwendet. Box und Jenkins stellten fest, dass die meisten Zeitreihen mit einem oder beiden Rahmen modelliert werden können.
preview
Neuronale Netze leicht gemacht (Teil 55): Contrastive Intrinsic Control (CIC)

Neuronale Netze leicht gemacht (Teil 55): Contrastive Intrinsic Control (CIC)

Das kontrastive Training ist eine unüberwachte Methode zum Training der Repräsentation. Ziel ist es, ein Modell zu trainieren, das Ähnlichkeiten und Unterschiede in Datensätzen aufzeigt. In diesem Artikel geht es um die Verwendung kontrastiver Trainingsansätze zur Erkundung verschiedener Fähigkeiten des Akteurs (Actor skills).
preview
Algorithmen zur Optimierung mit Populationen: Der Algorithmus Charged System Search (CSS)

Algorithmen zur Optimierung mit Populationen: Der Algorithmus Charged System Search (CSS)

In diesem Artikel werden wir einen weiteren Optimierungsalgorithmus betrachten, der von der unbelebten Natur inspiriert ist - den CSS-Algorithmus (Charged System Search, Suche geladener Systeme). In diesem Artikel wird ein neuer Optimierungsalgorithmus vorgestellt, der auf den Prinzipien der Physik und Mechanik beruht.
preview
Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil II

Algorithmen zur Optimierung mit Populationen: Binärer genetischer Algorithmus (BGA). Teil II

In diesem Artikel befassen wir uns mit dem binären genetischen Algorithmus (BGA), der die natürlichen Prozesse modelliert, die im genetischen Material von Lebewesen in der Natur ablaufen.
preview
DoEasy. Dienst-Funktionen (Teil 1): Preismuster

DoEasy. Dienst-Funktionen (Teil 1): Preismuster

In diesem Artikel werden wir mit der Entwicklung von Methoden zur Suche nach Preismustern anhand von Zeitreihendaten beginnen. Ein Muster hat einen bestimmten Satz von Parametern, die für alle Arten von Mustern gelten. Alle Daten dieser Art werden in der Objektklasse des abstrakten Basismusters konzentriert. In diesem Artikel werden wir eine abstrakte Musterklasse und eine Pin Bar-Musterklasse erstellen.
preview
Erstellen eines MQL5 Expert Advisors basierend auf der Strategie „Daily Range Breakout“

Erstellen eines MQL5 Expert Advisors basierend auf der Strategie „Daily Range Breakout“

In diesem Artikel erstellen wir einen MQL5 Expert Advisor auf Basis der Daily Range Breakout Strategie. Wir behandeln die wichtigsten Konzepte der Strategie, entwerfen den EA-Blaupause, und implementieren die Breakout-Logik in MQL5. Schließlich werden Techniken für das Backtesting und die Optimierung des EA erforscht, um seine Effektivität zu maximieren.
preview
Datenwissenschaft und maschinelles Lernen (Teil 15): SVM, ein Muss im Werkzeugkasten jedes Händlers

Datenwissenschaft und maschinelles Lernen (Teil 15): SVM, ein Muss im Werkzeugkasten jedes Händlers

Entdecken Sie die unverzichtbare Rolle von Support Vector Machines (SVM) bei der Gestaltung der Zukunft des Handels. Dieser umfassende Leitfaden zeigt auf, wie SVM Ihre Handelsstrategien verbessern, die Entscheidungsfindung optimieren und neue Chancen auf den Finanzmärkten erschließen kann. Tauchen Sie ein in die Welt der SVM mit realen Anwendungen, Schritt-für-Schritt-Tutorials und Expertenwissen. Rüsten Sie sich mit dem unverzichtbaren Werkzeug aus, das Ihnen helfen kann, die Komplexität des modernen Handels zu bewältigen. Verbessern Sie das Spiel Ihres Handels mit SVM - ein Muss für den Werkzeugkasten eines jeden Händlers.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 1): Das Profitunity System (Trading Chaos von Bill Williams)

Automatisieren von Handelsstrategien in MQL5 (Teil 1): Das Profitunity System (Trading Chaos von Bill Williams)

In diesem Artikel untersuchen wir das Profitunity System von Bill Williams, indem wir seine Kernkomponenten und seinen einzigartigen Ansatz für den Handel im Marktchaos aufschlüsseln. Wir führen die Leser durch die Implementierung des Systems in MQL5 und konzentrieren uns dabei auf die Automatisierung von Schlüsselindikatoren und Einstiegs-/Ausstiegssignalen. Schließlich testen und optimieren wir die Strategie und geben Einblicke in ihre Leistung in verschiedenen Marktszenarien.
preview
Algorithmen zur Optimierung mit Populationen Optimierung gemäß einer bakteriellen Nahrungssuche (BFO)

Algorithmen zur Optimierung mit Populationen Optimierung gemäß einer bakteriellen Nahrungssuche (BFO)

Die Strategie der Nahrungssuche des Bakteriums E. coli inspirierte die Wissenschaftler zur Entwicklung des BFO-Optimierungsalgorithmus. Der Algorithmus enthält originelle Ideen und vielversprechende Optimierungsansätze und ist es wert, weiter untersucht zu werden.
preview
Klassische Strategien neu interpretieren (Teil II): Bollinger-Bänder Ausbrüche

Klassische Strategien neu interpretieren (Teil II): Bollinger-Bänder Ausbrüche

Dieser Artikel untersucht eine Handelsstrategie, die die lineare Diskriminanzanalyse (LDA) mit Bollinger-Bändern integriert und kategorische Zonenvorhersagen für strategische Markteinstiegssignale nutzt.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt

Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt

In dem Artikel wird das Erstellen des nutzerdefinierten Indikatorobjekts für die Verwendung in EAs erklärt. Lassen Sie uns die Bibliotheksklassen leicht verbessern und Methoden hinzufügen, um Daten von Indikatorobjekten in EAs zu erhalten.
preview
Quantisierung beim maschinellen Lernen (Teil 2): Datenvorverarbeitung, Tabellenauswahl, Training von CatBoost-Modellen

Quantisierung beim maschinellen Lernen (Teil 2): Datenvorverarbeitung, Tabellenauswahl, Training von CatBoost-Modellen

Der Artikel befasst sich mit der praktischen Anwendung der Quantisierung bei der Konstruktion von Baummodellen. Die Methoden zur Auswahl von Quantentabellen und zur Datenvorverarbeitung werden berücksichtigt. Es werden keine komplexen mathematischen Gleichungen verwendet.
preview
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 5): Selbstanpassende Handelsregeln

Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 5): Selbstanpassende Handelsregeln

Die besten Praktiken, die festlegen, wie ein Indikator sicher zu verwenden ist, sind nicht immer leicht zu befolgen. Bei ruhigen Marktbedingungen kann der Indikator überraschenderweise Werte anzeigen, die nicht als Handelssignal gelten, was dazu führt, dass algorithmischen Händlern Chancen entgehen. In diesem Artikel wird eine mögliche Lösung für dieses Problem vorgeschlagen, da wir erörtern, wie Handelsanwendungen entwickelt werden können, die ihre Handelsregeln an die verfügbaren Marktdaten anpassen.
preview
Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Datenwissenschaft und maschinelles Lernen — Neuronales Netzwerk (Teil 02): Entwurf von Feed Forward NN-Architekturen

Bevor wir fertig sind, müssen wir noch einige kleinere Dinge im Zusammenhang mit dem neuronalen Feed-Forward-Netz behandeln, unter anderem den Entwurf. Sehen wir uns an, wie wir ein flexibles neuronales Netz für unsere Eingaben, die Anzahl der verborgenen Schichten und die Knoten für jedes Netz aufbauen und gestalten können.
preview
Erfahren Sie, wie Sie ein Handelssystem anhand des Relative Vigor Index entwickeln können

Erfahren Sie, wie Sie ein Handelssystem anhand des Relative Vigor Index entwickeln können

Ein neuer Artikel in unserer Serie darüber, wie man ein Handelssystem anhand eines beliebten technischen Indikators entwickelt. In diesem Artikel werden wir lernen, wie man das mit Hilfe des Relativen Vigot-Index-Indikators tun kann.
preview
Datenkennzeichnung für die Zeitreihenanalyse (Teil 3):Beispiel für die Verwendung von Datenkennzeichnungen

Datenkennzeichnung für die Zeitreihenanalyse (Teil 3):Beispiel für die Verwendung von Datenkennzeichnungen

In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung (labeling) von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!