Artikel über das Programmieren in MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Eine Schritt-für-Schritt-Anleitung zur Implementierung eines automatisierten Handelsalgorithmus in MQL5, der auf der Bollinger-Band-Handelsstrategie basiert. Ein detailliertes Tutorial zur Erstellung eines Expert Advisors, der für Händler nützlich sein kann.
preview
Neuronale Netze leicht gemacht (Teil 65): Abstandsgewichtetes überwachtes Lernen (DWSL)

Neuronale Netze leicht gemacht (Teil 65): Abstandsgewichtetes überwachtes Lernen (DWSL)

In diesem Artikel werden wir einen interessanten Algorithmus kennenlernen, der an der Schnittstelle von überwachten und verstärkenden Lernmethoden angesiedelt ist.
preview
Die diskrete Hartley-Transformation

Die diskrete Hartley-Transformation

In diesem Artikel werden wir eine der Methoden der Spektralanalyse und Signalverarbeitung betrachten - die diskrete Hartley-Transformation. Es ermöglicht die Filterung von Signalen, die Analyse ihres Spektrums und vieles mehr. Die Möglichkeiten der DHT stehen denen der diskreten Fourier-Transformation in nichts nach. Im Gegensatz zur DFT werden bei der DHT jedoch nur reelle Zahlen verwendet, was die Umsetzung in der Praxis erleichtert, und die Ergebnisse der Anwendung sind anschaulicher.
preview
Mehrere Indikatoren auf einem Chart (Teil 02): Erste Experiment

Mehrere Indikatoren auf einem Chart (Teil 02): Erste Experiment

Im vorherigen Artikel "Mehrere Indikatoren in einem Chart" habe ich das Konzept und die Grundlagen der Verwendung mehrerer Indikatoren in einem Chart vorgestellt. In diesem Artikel werde ich den Quellcode zur Verfügung stellen und ihn im Detail erklären.
preview
Verwendung der Klasse CCanvas in MQL-Anwendungen

Verwendung der Klasse CCanvas in MQL-Anwendungen

Der Artikel befasst sich mit der Verwendung der Klasse CCanvas in MQL-Anwendungen. Die Theorie wird von detaillierten Erklärungen und Beispielen begleitet, um ein gründliches Verständnis der CCanvas-Grundlagen zu ermöglichen.
preview
DoEasy. Steuerung (Teil 31): Scrollen des Inhalts des ScrollBar-Steuerelements

DoEasy. Steuerung (Teil 31): Scrollen des Inhalts des ScrollBar-Steuerelements

In diesem Artikel werde ich die Funktionsweise des Scrollens des Inhalts des Containers mithilfe der Schaltflächen der horizontalen Bildlaufleiste implementieren.
preview
Datenwissenschaft und maschinelles Lernen (Teil 11): Naïve Bayes, Wahrscheinlichkeitsrechnung im Handel

Datenwissenschaft und maschinelles Lernen (Teil 11): Naïve Bayes, Wahrscheinlichkeitsrechnung im Handel

Der Handel mit Wahrscheinlichkeiten ist wie ein Drahtseilakt - er erfordert Präzision, Ausgewogenheit und ein ausgeprägtes Risikobewusstsein. In der Welt des Handels ist die Wahrscheinlichkeit alles. Das ist der Unterschied zwischen Erfolg und Misserfolg, Gewinn und Verlust. Indem sie sich die Macht der Wahrscheinlichkeit zunutze machen, können Händler fundierte Entscheidungen treffen, Risiken effektiv verwalten und ihre finanziellen Ziele erreichen. Ob Sie nun ein erfahrener Anleger oder ein Anfänger sind, das Verständnis der Wahrscheinlichkeit ist der Schlüssel zur Entfaltung Ihres Handelspotenzials. In diesem Artikel werden wir die aufregende Welt des Handels mit Wahrscheinlichkeiten erkunden und Ihnen zeigen, wie Sie Ihr Handelsspiel auf die nächste Stufe heben können.
preview
Datenwissenschaft und maschinelles Lernen (Teil 12): Können selbstlernende neuronale Netze Ihnen helfen, den Aktienmarkt zu überlisten?

Datenwissenschaft und maschinelles Lernen (Teil 12): Können selbstlernende neuronale Netze Ihnen helfen, den Aktienmarkt zu überlisten?

Sind Sie es leid, ständig zu versuchen, den Aktienmarkt vorherzusagen? Hätten Sie gerne eine Kristallkugel, die Ihnen hilft, fundiertere Investitionsentscheidungen zu treffen? Selbst trainierte neuronale Netze könnten die Lösung sein, nach der Sie schon lange gesucht haben. In diesem Artikel gehen wir der Frage nach, ob diese leistungsstarken Algorithmen Ihnen helfen können, „die Welle zu reiten“ und den Aktienmarkt zu überlisten. Durch die Analyse großer Datenmengen und die Erkennung von Mustern können selbst trainierte neuronale Netze Vorhersagen treffen, die oft genauer sind als die von menschlichen Händlern. Entdecken Sie, wie Sie diese Spitzentechnologie nutzen können, um Ihre Gewinne zu maximieren und intelligentere Investitionsentscheidungen zu treffen.
preview
Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.
preview
Nicht-lineare Indikatoren

Nicht-lineare Indikatoren

In diesem Artikel werde ich versuchen, einige Möglichkeiten zur Erstellung nichtlinearer Indikatoren und deren Verwendung im Handel zu besprechen. In der MetaTrader-Handelsplattform gibt es eine ganze Reihe von Indikatoren, die nicht-lineare Ansätze verwenden.
preview
Verwendung des Algorithmus PatchTST für maschinelles Lernen zur Vorhersage der Kursentwicklung in den nächsten 24 Stunden

Verwendung des Algorithmus PatchTST für maschinelles Lernen zur Vorhersage der Kursentwicklung in den nächsten 24 Stunden

In diesem Artikel wenden wir einen relativ komplexen Algorithmus eines neuronalen Netzes aus dem Jahr 2023 namens PatchTST zur Vorhersage der Kursentwicklung der nächsten 24 Stunden an. Wir werden das offizielle Repository verwenden, geringfügige Änderungen vornehmen, ein Modell für EURUSD trainieren und es zur Erstellung von Zukunftsprognosen sowohl in Python als auch in MQL5 anwenden.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 4): Triangulärer gleitender Durchschnitt — Indikatorensignale

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 4): Triangulärer gleitender Durchschnitt — Indikatorensignale

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der mehr als nur ein Symbolpaar von dessen Symbolchart handeln kann (Aufträge öffnen, schließen und verwalten oder zum Beispiel Trailing Stop Loss und Trailing Profit). Dieses Mal werden wir nur 1 Indikator verwenden, nämlich den Triangulären gleitenden Durchschnitt in Multi-Timeframes oder Single-Timeframes.
preview
Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle im maschinellen Lernen: Automatische Erstellung von Handelssystemen mit wenig oder gar keinem menschlichen Eingriff — Das Modell entscheidet selbständig, wann und wie es handelt.
preview
Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Es gibt mehrere Arten von Algorithmen zur Selbstoptimierung von Handelsstrategien und Parametern. Diese Algorithmen werden zur automatischen Verbesserung von Handelsstrategien auf der Grundlage historischer und aktueller Marktdaten eingesetzt. In diesem Artikel werden wir uns eine davon mit Python und MQL5-Beispielen ansehen.
MVC-Entwurfsmuster und seine Anwendung (Teil 2): Diagramm der Interaktion zwischen den drei Komponenten
MVC-Entwurfsmuster und seine Anwendung (Teil 2): Diagramm der Interaktion zwischen den drei Komponenten

MVC-Entwurfsmuster und seine Anwendung (Teil 2): Diagramm der Interaktion zwischen den drei Komponenten

Dieser Artikel ist eine Fortsetzung und Vervollständigung des im vorherigen Artikel behandelten Themas: das MVC-Muster in MQL-Programmen. In diesem Artikel werden wir ein Diagramm der möglichen Interaktion zwischen den drei Komponenten des Musters betrachten.
preview
DoEasy. Steuerung (Teil 20): Das WinForms-Objekt SplitContainer

DoEasy. Steuerung (Teil 20): Das WinForms-Objekt SplitContainer

In diesem Artikel werde ich mit der Entwicklung des SplitContainer-Steuerelements aus dem MS Visual Studio-Toolkit beginnen. Diese Steuerelement besteht aus zwei Feldern, die durch eine vertikale oder horizontale bewegliche Trennwand getrennt sind.
preview
Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Dieser Artikel versucht, die Frage zu beantworten: Wie kann man die richtigen Expert Advisor auswählen? Welche sind die besten für unser Portfolio, und wie können wir die große Liste der auf dem Markt erhältlichen Handelsroboter filtern? In diesem Artikel werden zwanzig klare und starke Kriterien für die Ablehnung eines Expert Advisors vorgestellt. Jedes Kriterium wird vorgestellt und gut erklärt, um Ihnen zu helfen, eine nachhaltigere Entscheidung zu treffen und eine profitablere Expert Advisor-Sammlung für Ihre Gewinne aufzubauen.
preview
Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität

Neuronale Netze leicht gemacht (Teil 17): Reduzierung der Dimensionalität

In diesem Teil setzen wir die Diskussion über die Modelle der Künstlichen Intelligenz fort. Wir untersuchen vor allem Algorithmen für unüberwachtes Lernen. Wir haben bereits einen der Clustering-Algorithmen besprochen. In diesem Artikel stelle ich eine Variante zur Lösung von Problemen im Zusammenhang mit der Dimensionsreduktion vor.
preview
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Das ursprüngliche Ziel dieses Artikels ist es nicht, alle Möglichkeiten des Forex-Handels abzudecken, sondern das System so anzupassen, dass Sie zumindest ein Replay des Marktes durchführen können. Wir lassen die Simulation noch einen Moment auf sich warten. Wenn wir jedoch keine Ticks, sondern nur Balken haben, können wir mit ein wenig Aufwand mögliche Abschlüsse simulieren, die auf dem Forex-Markt passieren könnten. Dies wird der Fall sein, bis wir uns mit der Anpassung des Simulators befassen. Der Versuch, mit Forex-Daten innerhalb des Systems zu arbeiten, ohne sie zu verändern, führt zu einer Reihe von Fehlern.
preview
Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Wir haben die Q-Learning-Methode in einem der früheren Artikel dieser Serie kennengelernt. Bei dieser Methode werden die Belohnungen für jede Aktion gemittelt. Im Jahr 2017 wurden zwei Arbeiten vorgestellt, die einen größeren Erfolg bei der Untersuchung der Belohnungsverteilungsfunktion zeigen. Wir sollten die Möglichkeit in Betracht ziehen, diese Technologie zur Lösung unserer Probleme einzusetzen.
Der Indikator CCI: Drei Transformationsschritte
Der Indikator CCI: Drei Transformationsschritte

Der Indikator CCI: Drei Transformationsschritte

In diesem Artikel werde ich zusätzliche Änderungen am CCI vornehmen, die die eigentliche Logik dieses Indikators betreffen. Außerdem können wir sie im Hauptfenster des Charts sehen.
preview
Lernen Sie, wie man ein Handelssystem mit Gator Oscillator entwickelt

Lernen Sie, wie man ein Handelssystem mit Gator Oscillator entwickelt

Ein neuer Artikel in unserer Serie über die Entwicklung eines Handelssystems auf der Grundlage beliebter technischer Indikatoren wird sich mit dem technischen Indikator Gator Oscillator und der Erstellung eines Handelssystems durch einfache Strategien befassen.
preview
Experimente mit neuronalen Netzen (Teil 7): Übergabe von Indikatoren

Experimente mit neuronalen Netzen (Teil 7): Übergabe von Indikatoren

Beispiele für die Übergabe von Indikatoren an ein Perzeptron. Der Artikel beschreibt allgemeine Konzepte und stellt den einfachsten fertigen Expert Advisor vor, gefolgt von den Ergebnissen seiner Optimierung und seines Vorwärtstests.
preview
Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Trader eine Hilfe sein können.
preview
Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Der Artikel liefert ein Beispiel für die Verwendung eines Perzeptrons als autarkes Preisprognoseinstrument, indem er allgemeine Konzepte und den einfachsten vorgefertigten Expert Advisor vorstellt und anschließend die Ergebnisse seiner Optimierung zeigt.
preview
Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Wissen Sie, was ein Flussdiagramm ist? Können Sie es verwenden? Glauben Sie, dass Flussdiagramme etwas für Anfänger sind? Ich schlage vor, dass wir mit diesem neuen Artikel fortfahren und lernen, wie man mit Flussdiagrammen arbeitet.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5):  Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5): Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der handeln kann (z.B. Aufträge eröffnen, schließen und verwalten, Trailing Stop Loss und Trailing Profit) für mehr als ein Symbolpaar aus nur einem Symbolchart. In diesem Artikel werden wir Signale von zwei Indikatoren verwenden, in diesem Fall Bollinger Bänder® und dem Keltner Kanal.
preview
Arbeiten mit ONNX-Modellen in den Datenformaten float16 und float8

Arbeiten mit ONNX-Modellen in den Datenformaten float16 und float8

Die Datenformate, die zur Darstellung von Modellen des maschinellen Lernens verwendet werden, spielen eine entscheidende Rolle für deren Effektivität. In den letzten Jahren sind mehrere neue Datentypen aufgetaucht, die speziell für die Arbeit mit Deep-Learning-Modellen entwickelt wurden. In diesem Artikel werden wir uns auf zwei neue Datenformate konzentrieren, die sich in modernen Modellen durchgesetzt haben.
preview
Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

In diesem Artikel werden wir uns mit dem Algorithmus befassen, der von allen bisher diskutierten Algorithmen die umstrittensten Ergebnisse zeigt - der Algorithmus der differentiellen Evolution (DE).
preview
Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt. Mit ihrer Hilfe wird es möglich sein, Pufferdaten beliebiger Indikatoren zu sortieren und zu vergleichen, sowie andere ähnliche Daten miteinander zu vergleichen.
preview
Datenwissenschaft und maschinelles Lernen (Teil 07): Polynome Regression

Datenwissenschaft und maschinelles Lernen (Teil 07): Polynome Regression

Im Gegensatz zur linearen Regression ist die polynome Regression ein flexibles Modell, das darauf abzielt, Aufgaben besser zu erfüllen, die das lineare Regressionsmodell nicht bewältigen kann. Lassen Sie uns herausfinden, wie man polynome Modelle in MQL5 erstellt und etwas Positives daraus macht.
preview
DoEasy. Steuerung (Teil 26): Fertigstellung des WinForms-Objekts ToolTip und Weiterführung der Entwicklung der ProgressBar

DoEasy. Steuerung (Teil 26): Fertigstellung des WinForms-Objekts ToolTip und Weiterführung der Entwicklung der ProgressBar

In diesem Artikel werde ich die Entwicklung des ToolTip-Steuerelements abschließen und mit der Entwicklung des WinForms-Objekts der ProgressBar beginnen. Bei der Arbeit an Objekten werde ich universelle Funktionen für die Animation von Steuerelementen und deren Komponenten entwickeln.
preview
DoEasy. Steuerung (Teil 4): Paneel-Steuerung, Parameter für Padding und Dock

DoEasy. Steuerung (Teil 4): Paneel-Steuerung, Parameter für Padding und Dock

In diesem Artikel werde ich die Handhabung der Parameter von Padding (interne Einzüge/Rand auf allen Seiten eines Elements) und Dock (die Art und Weise, wie sich ein Objekt in seinem Container befindet) implementieren.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Wir müssen unsere Arbeit besser organisieren. Der Code wächst, und wenn dies nicht jetzt geschieht, wird es unmöglich werden. Lasst uns teilen und erobern. MQL5 erlaubt die Verwendung von Klassen, die bei der Umsetzung dieser Aufgabe helfen, aber dafür müssen wir einige Kenntnisse über Klassen haben. Das, was Anfänger am meisten verwirrt, ist wahrscheinlich die Vererbung. In diesem Artikel werden wir uns ansehen, wie man diese Mechanismen auf praktische und einfache Weise nutzen kann.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

Strategien, die auf mehreren Zeitrahmen (Multi-Timeframe) basieren, können aufgrund der in den Assembly-Klassen verwendeten MQL5-Code-Architektur standardmäßig nicht in den vom Assistenten zusammengestellten Expert Advisors getestet werden. In einer Fallstudie mit dem quadratischen gleitenden Durchschnitt untersuchen wir, wie sich diese Einschränkung bei Strategien, die mehrere Zeitrahmen nutzen wollen, umgehen lässt.
preview
Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Hier ist ein neuer Artikel in unserer Serie darüber, wie man ein Handelssystem anhand der beliebtesten technischen Indikatoren entwickelt. In diesem Artikel stellen wir Ihnen vor, wie Sie ein Handelssystem mit dem Indikator DeMarker erstellen können.
preview
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.
preview
Kategorientheorie in MQL5 (Teil 22): Ein anderer Blick auf gleitende Durchschnitte

Kategorientheorie in MQL5 (Teil 22): Ein anderer Blick auf gleitende Durchschnitte

In diesem Artikel versuchen wir, die in dieser Reihe behandelten Konzepte zu vereinfachen, indem wir uns auf einen einzigen Indikator beschränken, der am häufigsten vorkommt und wahrscheinlich am leichtesten zu verstehen ist. Der gleitende Durchschnitt. Dabei betrachten wir die Bedeutung und die möglichen Anwendungen von vertikalen natürlichen Transformationen.
preview
Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5

Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5

Modelle des maschinellen Lernens sind schwer zu interpretieren, und das Verständnis dafür, warum unsere Modelle von unseren Erwartungen abweichen, ist von entscheidender Bedeutung, wenn wir einen Nutzen aus dem Einsatz dieser fortschrittlichen Techniken ziehen wollen. Ohne einen umfassenden Einblick in das Innenleben unseres Modells könnten wir Fehler nicht erkennen, die die Leistung unseres Modells beeinträchtigen, wir könnten Zeit mit der Entwicklung von Funktionen verschwenden, die nicht vorhersagbar sind, und langfristig riskieren wir, die Leistungsfähigkeit dieser Modelle nicht voll auszuschöpfen. Glücklicherweise gibt es eine ausgeklügelte und gut gewartete Komplettlösung, mit der wir genau sehen können, was unser Modell unter seiner Haube macht.