Artikel über das Programmieren in MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Wir haben die Q-Learning-Methode in einem der früheren Artikel dieser Serie kennengelernt. Bei dieser Methode werden die Belohnungen für jede Aktion gemittelt. Im Jahr 2017 wurden zwei Arbeiten vorgestellt, die einen größeren Erfolg bei der Untersuchung der Belohnungsverteilungsfunktion zeigen. Wir sollten die Möglichkeit in Betracht ziehen, diese Technologie zur Lösung unserer Probleme einzusetzen.
preview
DoEasy. Steuerung (Teil 20): Das WinForms-Objekt SplitContainer

DoEasy. Steuerung (Teil 20): Das WinForms-Objekt SplitContainer

In diesem Artikel werde ich mit der Entwicklung des SplitContainer-Steuerelements aus dem MS Visual Studio-Toolkit beginnen. Diese Steuerelement besteht aus zwei Feldern, die durch eine vertikale oder horizontale bewegliche Trennwand getrennt sind.
preview
Erstellen eines täglichen Drawdown-Limits EA in MQL5

Erstellen eines täglichen Drawdown-Limits EA in MQL5

Der Artikel beschreibt detailliert, wie die Erstellung eines Expert Advisors (EA) auf der Grundlage des Handelsalgorithmus umgesetzt werden kann. Dies hilft, das System im MQL5 zu automatisieren und die Kontrolle über den Daily Drawdown zu übernehmen.
preview
Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Dieser Artikel, der Teil einer größeren Serie über die Implementierung der Kategorientheorie in MQL5 ist. Er befasst sich mit Funktoren. Wir untersuchen, wie eine lineare Ordnung mit Hilfe von Funktoren auf eine Menge abgebildet werden kann, indem wir zwei Datensätze betrachten, bei denen man normalerweise keinen Zusammenhang vermuten würde.
preview
Verwendung des JSON Data APIs in Ihren MQL-Projekten

Verwendung des JSON Data APIs in Ihren MQL-Projekten

Stellen Sie sich vor, dass Sie Daten verwenden können, die nicht im MetaTrader zu finden sind, sondern nur von Indikatoren der Preisanalyse und der technischen Analyse stammen. Stellen Sie sich nun vor, dass Sie auf Daten zugreifen können, die Ihre Handelskraft um ein Vielfaches erhöhen. Sie können die Leistung der MetaTrader-Software vervielfachen, wenn Sie den Output anderer Software, Makro-Analysemethoden und hochentwickelte Tools über die ​API-Daten. In diesem Artikel zeigen wir Ihnen, wie Sie APIs nutzen können und stellen Ihnen nützliche und wertvolle API-Datendienste vor.
preview
Aufbau und Test von Keltner-Kanal-Handelssystemen

Aufbau und Test von Keltner-Kanal-Handelssystemen

In diesem Artikel werden wir versuchen, Handelssysteme anzubieten, die ein sehr wichtiges Konzept auf dem Finanzmarkt verwenden, nämlich die Volatilität. Wir werden ein Handelssystem auf der Grundlage des Keltner-Kanal-Indikators bereitstellen, nachdem wir ihn verstanden haben und wissen, wie wir ihn kodieren können und wie wir ein Handelssystem auf der Grundlage einer einfachen Handelsstrategie erstellen und es dann an verschiedenen Vermögenswerten testen können.
preview
Der Indikator CCI: Upgrade und neue Funktionen

Der Indikator CCI: Upgrade und neue Funktionen

In diesem Artikel werde ich mich mit der Möglichkeit befassen, den CCI-Indikator zu verbessern. Außerdem werde ich eine Änderung des Indikators vorstellen.
preview
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
preview
Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Wissen Sie, was ein Flussdiagramm ist? Können Sie es verwenden? Glauben Sie, dass Flussdiagramme etwas für Anfänger sind? Ich schlage vor, dass wir mit diesem neuen Artikel fortfahren und lernen, wie man mit Flussdiagrammen arbeitet.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

Strategien, die auf mehreren Zeitrahmen (Multi-Timeframe) basieren, können aufgrund der in den Assembly-Klassen verwendeten MQL5-Code-Architektur standardmäßig nicht in den vom Assistenten zusammengestellten Expert Advisors getestet werden. In einer Fallstudie mit dem quadratischen gleitenden Durchschnitt untersuchen wir, wie sich diese Einschränkung bei Strategien, die mehrere Zeitrahmen nutzen wollen, umgehen lässt.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zum Abschluss des Themas Arbeit mit Zeitreihen organisieren wir das Speichern, Suchen und Sortieren von Daten, die in Indikatorpuffern gespeichert sind, was die weitere Durchführung der Analyse auf der Grundlage von Werten der Indikatoren ermöglicht, die auf der Basis der Bibliothek in Programmen zu erstellen sind. Das allgemeine Konzept aller Kollektionsklassen der Bibliothek ermöglicht es, die benötigten Daten in der entsprechenden Kollektion leicht zu finden. Dementsprechend wird das Gleiche in der heute erstellten Klasse möglich sein.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5):  Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5): Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der handeln kann (z.B. Aufträge eröffnen, schließen und verwalten, Trailing Stop Loss und Trailing Profit) für mehr als ein Symbolpaar aus nur einem Symbolchart. In diesem Artikel werden wir Signale von zwei Indikatoren verwenden, in diesem Fall Bollinger Bänder® und dem Keltner Kanal.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt. Mit ihrer Hilfe wird es möglich sein, Pufferdaten beliebiger Indikatoren zu sortieren und zu vergleichen, sowie andere ähnliche Daten miteinander zu vergleichen.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 07): Erste Verbesserungen (II)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 07): Erste Verbesserungen (II)

Im letzten Artikel haben wir einige Korrekturen vorgenommen und Tests zu unserem Replay System hinzugefügt, um die bestmögliche Stabilität zu gewährleisten. Wir haben auch mit der Erstellung und Verwendung einer Konfigurationsdatei für dieses System begonnen.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 50): Verschieben der Standardindikatoren für mehrere Symbole und Perioden

Zeitreihen in der Bibliothek DoEasy (Teil 50): Verschieben der Standardindikatoren für mehrere Symbole und Perioden

In diesem Artikel wollen wir die Bibliotheksmethoden für die korrekte Anzeige von Mehrsymbol- und Mehrperioden-Standardindikatoren verbessern, wobei die Linien auf dem aktuellen Symbol-Chart mit einer in den Einstellungen festgelegten Verschiebung angezeigt werden. Außerdem sollten wir die Methoden für die Arbeit mit Standardindikatoren in Ordnung bringen und den redundanten Code für den Bibliotheksbereich im endgültigen Indikatorprogramm entferne.
preview
Erwartungsnutzen im Handel

Erwartungsnutzen im Handel

In diesem Artikel geht es den Erwartungsnutzen. Wir werden einige Beispiele für seine Verwendung im Handel sowie die Ergebnisse, die mit seiner Hilfe erzielt werden können, betrachten.
preview
Multibot im MetaTrader (Teil II): Verbesserte dynamische Vorlage

Multibot im MetaTrader (Teil II): Verbesserte dynamische Vorlage

In Fortführung des Themas des vorangegangenen Artikels habe ich mich entschlossen, eine flexiblere und funktionellere Vorlage zu erstellen, die über größere Möglichkeiten verfügt und sowohl in der Freiberuflichkeit als auch als Basis für die Entwicklung von Mehrwährungs- und Mehrperioden-EAs mit der Fähigkeit zur Integration mit externen Lösungen effektiv genutzt werden kann.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil III)

Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil III)

Dieser Teil der Artikelserie ist der Integration von WhatsApp mit MetaTrader 5 für Benachrichtigungen gewidmet. Zum besseren Verständnis haben wir ein Flussdiagramm beigefügt und werden die Bedeutung von Sicherheitsmaßnahmen bei der Integration erörtern. Der Hauptzweck von Indikatoren besteht darin, die Analyse durch Automatisierung zu vereinfachen, und sie sollten Benachrichtigungsmethoden enthalten, um Nutzer zu alarmieren, wenn bestimmte Bedingungen erfüllt sind. Erfahren Sie mehr in diesem Artikel.
preview
Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Lernen Sie, wie man ein Handelssystem mit dem DeMarker entwickelt

Hier ist ein neuer Artikel in unserer Serie darüber, wie man ein Handelssystem anhand der beliebtesten technischen Indikatoren entwickelt. In diesem Artikel stellen wir Ihnen vor, wie Sie ein Handelssystem mit dem Indikator DeMarker erstellen können.
preview
DoEasy. Steuerung (Teil 30): Animieren des ScrollBar-Steuerelements

DoEasy. Steuerung (Teil 30): Animieren des ScrollBar-Steuerelements

In diesem Artikel werde ich die Entwicklung des ScrollBar-Steuerelements fortsetzen und mit der Implementierung der Interaktionsfunktionen der Maus beginnen. Außerdem werde ich die Listen der Status-Flags der Maus und der Ereignisse erweitern.
preview
Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5

Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5

Modelle des maschinellen Lernens sind schwer zu interpretieren, und das Verständnis dafür, warum unsere Modelle von unseren Erwartungen abweichen, ist von entscheidender Bedeutung, wenn wir einen Nutzen aus dem Einsatz dieser fortschrittlichen Techniken ziehen wollen. Ohne einen umfassenden Einblick in das Innenleben unseres Modells könnten wir Fehler nicht erkennen, die die Leistung unseres Modells beeinträchtigen, wir könnten Zeit mit der Entwicklung von Funktionen verschwenden, die nicht vorhersagbar sind, und langfristig riskieren wir, die Leistungsfähigkeit dieser Modelle nicht voll auszuschöpfen. Glücklicherweise gibt es eine ausgeklügelte und gut gewartete Komplettlösung, mit der wir genau sehen können, was unser Modell unter seiner Haube macht.
preview
Selbstoptimierende Expert Advisors in MQL5 erstellen

Selbstoptimierende Expert Advisors in MQL5 erstellen

Bauen wir Expert Advisor, die in die Zukunft blicken und sich an jeden Markt anpassen können.
preview
Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Entfalten Sie Ihr Potenzial! Sie sind von Möglichkeiten umgeben. Entdecken Sie die 3 wichtigsten Geheimnisse, um Ihre MQL5-Reise in Gang zu bringen oder auf die nächste Stufe zu heben. Lassen Sie uns in die Diskussion über Tipps und Tricks für Anfänger und Profis gleichermaßen eintauchen.
preview
Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Dieser Artikel versucht, die Frage zu beantworten: Wie kann man die richtigen Expert Advisor auswählen? Welche sind die besten für unser Portfolio, und wie können wir die große Liste der auf dem Markt erhältlichen Handelsroboter filtern? In diesem Artikel werden zwanzig klare und starke Kriterien für die Ablehnung eines Expert Advisors vorgestellt. Jedes Kriterium wird vorgestellt und gut erklärt, um Ihnen zu helfen, eine nachhaltigere Entscheidung zu treffen und eine profitablere Expert Advisor-Sammlung für Ihre Gewinne aufzubauen.
preview
Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle im maschinellen Lernen: Automatische Erstellung von Handelssystemen mit wenig oder gar keinem menschlichen Eingriff — Das Modell entscheidet selbständig, wann und wie es handelt.
preview
Datenwissenschaft und maschinelles Lernen (Teil 07): Polynome Regression

Datenwissenschaft und maschinelles Lernen (Teil 07): Polynome Regression

Im Gegensatz zur linearen Regression ist die polynome Regression ein flexibles Modell, das darauf abzielt, Aufgaben besser zu erfüllen, die das lineare Regressionsmodell nicht bewältigen kann. Lassen Sie uns herausfinden, wie man polynome Modelle in MQL5 erstellt und etwas Positives daraus macht.
preview
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 13): Times and Trade (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 13): Times and Trade (II)

Heute werden wir den zweiten Teil des Systems Times & Trade (Zeiten und Handel) zur Marktanalyse aufbauen. Im vorangegangenen Artikel „Times & Trade (I)“ haben wir eine alternative Chartorganisation besprochen, die es erlauben würde, einen Indikator für die schnellstmögliche Interpretation der am Markt getätigten Geschäfte zu haben.
preview
Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.
preview
Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung

Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung

Wir setzen die Untersuchung der Umgebung in Modellen des verstärkten Lernens fort. Und in diesem Artikel werden wir uns einen weiteren Algorithmus ansehen – Go-Explore. Er ermöglicht es Ihnen, die Umgebung in der Phase der Modellbildung effektiv zu erkunden.
preview
Kategorientheorie in MQL5 (Teil 23): Ein anderer Blick auf den doppelten exponentiellen gleitenden Durchschnitt

Kategorientheorie in MQL5 (Teil 23): Ein anderer Blick auf den doppelten exponentiellen gleitenden Durchschnitt

In diesem Artikel setzen wir unser Thema vom letzten Mal fort, indem wir uns mit alltäglichen Handelsindikatoren befassen, die wir in einem „neuen“ Licht betrachten. Wir befassen uns in diesem Beitrag mit der horizontalen Zusammensetzung natürlicher Transformationen, und der beste Indikator dafür, der das soeben behandelte Thema noch erweitert, ist der doppelte exponentielle gleitende Durchschnitt (DEMA).
preview
Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

In diesem Artikel werden wir uns mit dem Algorithmus befassen, der von allen bisher diskutierten Algorithmen die umstrittensten Ergebnisse zeigt - der Algorithmus der differentiellen Evolution (DE).
preview
DoEasy. Steuerung (Teil 22): SplitContainer. Ändern der Eigenschaften des erstellten Objekts

DoEasy. Steuerung (Teil 22): SplitContainer. Ändern der Eigenschaften des erstellten Objekts

In diesem Artikel werde ich die Möglichkeit implementieren, die Eigenschaften und das Aussehen des neu erstellten SplitContainer-Steuerelements zu ändern.
preview
Lernen Sie, wie man ein Handelssystem mit Gator Oscillator entwickelt

Lernen Sie, wie man ein Handelssystem mit Gator Oscillator entwickelt

Ein neuer Artikel in unserer Serie über die Entwicklung eines Handelssystems auf der Grundlage beliebter technischer Indikatoren wird sich mit dem technischen Indikator Gator Oscillator und der Erstellung eines Handelssystems durch einfache Strategien befassen.
preview
Prognose mit ARIMA-Modellen in MQL5

Prognose mit ARIMA-Modellen in MQL5

In diesem Artikel setzen wir die Entwicklung der CArima-Klasse zur Erstellung von ARIMA-Modellen fort, indem wir intuitive Methoden hinzufügen, die Vorhersagen ermöglichen.
preview
Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)

Neuronale Netze leicht gemacht (Teil 81): Kontextgesteuerte Bewegungsanalyse (CCMR)

In früheren Arbeiten haben wir immer den aktuellen Zustand der Umwelt bewertet. Gleichzeitig blieb die Dynamik der Veränderungen bei den Indikatoren immer „hinter den Kulissen“. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, mit dem Sie die direkte Veränderung der Daten zwischen 2 aufeinanderfolgenden Umweltzuständen bewerten können.
preview
Datenwissenschaft und maschinelles Lernen (Teil 25): Forex-Zeitreihenvorhersage mit einem rekurrenten neuronalen Netzwerk (RNN)

Datenwissenschaft und maschinelles Lernen (Teil 25): Forex-Zeitreihenvorhersage mit einem rekurrenten neuronalen Netzwerk (RNN)

Rekurrente neuronale Netze (RNNs) zeichnen sich dadurch aus, dass sie Informationen aus der Vergangenheit nutzen, um zukünftige Ereignisse vorherzusagen. Ihre bemerkenswerten Vorhersagefähigkeiten wurden in verschiedenen Bereichen mit großem Erfolg eingesetzt. In diesem Artikel werden wir RNN-Modelle zur Vorhersage von Trends auf dem Devisenmarkt einsetzen und ihr Potenzial zur Verbesserung der Vorhersagegenauigkeit beim Devisenhandel aufzeigen.
preview
Strukturen in MQL5 und Methoden zum Drucken deren Daten

Strukturen in MQL5 und Methoden zum Drucken deren Daten

In diesem Artikel werden wir uns die Strukturen von MqlDateTime, MqlTick, MqlRates und MqlBookInfo ansehen sowie die Methoden zum Drucken von deren Daten. Um alle Felder einer Struktur auszudrucken, gibt es die Standardfunktion ArrayPrint(), die die im Array enthaltenen Daten mit dem Typ der behandelten Struktur in einem praktischen Tabellenformat anzeigt.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 12): Times and Trade (I)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 12): Times and Trade (I)

Heute werden wir „Times and Trade“ (Zeiten und Handel) mit einer schnellen Interpretation erstellen, um den Auftragsfluss zu lesen. Es ist der erste Teil, in dem wir das System aufbauen werden. Im nächsten Artikel vervollständigen wir das System mit den fehlenden Informationen. Um diese neue Funktionsweisen zu implementieren, müssen wir dem Code unseres Expert Advisors mehrere neue Dinge hinzufügen.
preview
Neuronale Netze leicht gemacht (Teil 62): Verwendung des Entscheidungs-Transformer in hierarchischen Modellen

Neuronale Netze leicht gemacht (Teil 62): Verwendung des Entscheidungs-Transformer in hierarchischen Modellen

In den letzten Artikeln haben wir verschiedene Optionen für die Verwendung der Entscheidungs-Transformer-Methode gesehen. Die Methode erlaubt es, nicht nur den aktuellen Zustand zu analysieren, sondern auch die Trajektorie früherer Zustände und die darin durchgeführten Aktionen. In diesem Artikel werden wir uns auf die Anwendung dieser Methode in hierarchischen Modellen konzentrieren.