Artikel über das Programmieren in MQL5

icon

Lernen Sie die Sprache von Handelsstrategien MQL5 nach den hier veröffentlichten Artikeln, die meisten von denen Sie - die Mitglieder der Community - geschrieben haben. Alle Artikel sind in drei Kategorien aufgeteilt, damit man eine Antwort auf unterschiedliche Fragen des Programmierens schnell finden könnte: "Integration", "Tester", "Handelsstrategien" und vieles mehr.

Verfolgen Sie neue Veröffentlichungen und diskutieren Sie über diese im Forum!

Neuer Artikel
letzte | beste
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Das ursprüngliche Ziel dieses Artikels ist es nicht, alle Möglichkeiten des Forex-Handels abzudecken, sondern das System so anzupassen, dass Sie zumindest ein Replay des Marktes durchführen können. Wir lassen die Simulation noch einen Moment auf sich warten. Wenn wir jedoch keine Ticks, sondern nur Balken haben, können wir mit ein wenig Aufwand mögliche Abschlüsse simulieren, die auf dem Forex-Markt passieren könnten. Dies wird der Fall sein, bis wir uns mit der Anpassung des Simulators befassen. Der Versuch, mit Forex-Daten innerhalb des Systems zu arbeiten, ohne sie zu verändern, führt zu einer Reihe von Fehlern.
preview
Experimente mit neuronalen Netzen (Teil 7): Übergabe von Indikatoren

Experimente mit neuronalen Netzen (Teil 7): Übergabe von Indikatoren

Beispiele für die Übergabe von Indikatoren an ein Perzeptron. Der Artikel beschreibt allgemeine Konzepte und stellt den einfachsten fertigen Expert Advisor vor, gefolgt von den Ergebnissen seiner Optimierung und seines Vorwärtstests.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 4): Triangulärer gleitender Durchschnitt — Indikatorensignale

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 4): Triangulärer gleitender Durchschnitt — Indikatorensignale

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der mehr als nur ein Symbolpaar von dessen Symbolchart handeln kann (Aufträge öffnen, schließen und verwalten oder zum Beispiel Trailing Stop Loss und Trailing Profit). Dieses Mal werden wir nur 1 Indikator verwenden, nämlich den Triangulären gleitenden Durchschnitt in Multi-Timeframes oder Single-Timeframes.
preview
Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Implementierung einer Handelsstrategie der Bollinger Bänder mit MQL5: Ein schrittweiser Leitfaden

Eine Schritt-für-Schritt-Anleitung zur Implementierung eines automatisierten Handelsalgorithmus in MQL5, der auf der Bollinger-Band-Handelsstrategie basiert. Ein detailliertes Tutorial zur Erstellung eines Expert Advisors, der für Händler nützlich sein kann.
preview
Nicht-lineare Indikatoren

Nicht-lineare Indikatoren

In diesem Artikel werde ich versuchen, einige Möglichkeiten zur Erstellung nichtlinearer Indikatoren und deren Verwendung im Handel zu besprechen. In der MetaTrader-Handelsplattform gibt es eine ganze Reihe von Indikatoren, die nicht-lineare Ansätze verwenden.
preview
Selbstoptimierende Expert Advisors in MQL5 erstellen

Selbstoptimierende Expert Advisors in MQL5 erstellen

Bauen wir Expert Advisor, die in die Zukunft blicken und sich an jeden Markt anpassen können.
preview
Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Trader eine Hilfe sein können.
preview
Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt

Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt

Es gibt viele technische Hilfsmittel, die zur Visualisierung eines die Kurse umgebenden Kanals verwendet werden können. Eines dieser Hilfsmittel ist der Donchian Channel Indikator. In diesem Artikel erfahren Sie, wie Sie den Donchian Channel Indikator erstellen und wie Sie ihn als nutzerdefinierten Indikator mit EA handeln können.
preview
Erwartungsnutzen im Handel

Erwartungsnutzen im Handel

In diesem Artikel geht es den Erwartungsnutzen. Wir werden einige Beispiele für seine Verwendung im Handel sowie die Ergebnisse, die mit seiner Hilfe erzielt werden können, betrachten.
preview
DoEasy. Steuerung (Teil 20): Das WinForms-Objekt SplitContainer

DoEasy. Steuerung (Teil 20): Das WinForms-Objekt SplitContainer

In diesem Artikel werde ich mit der Entwicklung des SplitContainer-Steuerelements aus dem MS Visual Studio-Toolkit beginnen. Diese Steuerelement besteht aus zwei Feldern, die durch eine vertikale oder horizontale bewegliche Trennwand getrennt sind.
preview
Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Erstellen eines automatisch arbeitenden EA (Teil 13): Automatisierung (V)

Wissen Sie, was ein Flussdiagramm ist? Können Sie es verwenden? Glauben Sie, dass Flussdiagramme etwas für Anfänger sind? Ich schlage vor, dass wir mit diesem neuen Artikel fortfahren und lernen, wie man mit Flussdiagrammen arbeitet.
preview
Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Experimente mit neuronalen Netzen (Teil 6): Das Perzeptron als autarkes Instrument zur Preisprognose

Der Artikel liefert ein Beispiel für die Verwendung eines Perzeptrons als autarkes Preisprognoseinstrument, indem er allgemeine Konzepte und den einfachsten vorgefertigten Expert Advisor vorstellt und anschließend die Ergebnisse seiner Optimierung zeigt.
preview
Verwendung der Klasse CCanvas in MQL-Anwendungen

Verwendung der Klasse CCanvas in MQL-Anwendungen

Der Artikel befasst sich mit der Verwendung der Klasse CCanvas in MQL-Anwendungen. Die Theorie wird von detaillierten Erklärungen und Beispielen begleitet, um ein gründliches Verständnis der CCanvas-Grundlagen zu ermöglichen.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Wir müssen unsere Arbeit besser organisieren. Der Code wächst, und wenn dies nicht jetzt geschieht, wird es unmöglich werden. Lasst uns teilen und erobern. MQL5 erlaubt die Verwendung von Klassen, die bei der Umsetzung dieser Aufgabe helfen, aber dafür müssen wir einige Kenntnisse über Klassen haben. Das, was Anfänger am meisten verwirrt, ist wahrscheinlich die Vererbung. In diesem Artikel werden wir uns ansehen, wie man diese Mechanismen auf praktische und einfache Weise nutzen kann.
preview
Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle für maschinelles Lernen und Handel: Ursprünglicher Zeitpunkt der Handelsaufträge

Metamodelle im maschinellen Lernen: Automatische Erstellung von Handelssystemen mit wenig oder gar keinem menschlichen Eingriff — Das Modell entscheidet selbständig, wann und wie es handelt.
preview
Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Neuronale Netze leicht gemacht (Teil 32): Verteiltes Q-Learning

Wir haben die Q-Learning-Methode in einem der früheren Artikel dieser Serie kennengelernt. Bei dieser Methode werden die Belohnungen für jede Aktion gemittelt. Im Jahr 2017 wurden zwei Arbeiten vorgestellt, die einen größeren Erfolg bei der Untersuchung der Belohnungsverteilungsfunktion zeigen. Wir sollten die Möglichkeit in Betracht ziehen, diese Technologie zur Lösung unserer Probleme einzusetzen.
preview
Einführung in MQL5 (Teil 3): Beherrschung der Kernelemente von MQL5

Einführung in MQL5 (Teil 3): Beherrschung der Kernelemente von MQL5

Entdecken Sie die Grundlagen der MQL5-Programmierung in diesem einsteigerfreundlichen Artikel, in dem wir Arrays, nutzerdefinierte Funktionen, Präprozessoren und die Ereignisbehandlung entmystifizieren, wobei jede Codezeile verständlich erklärt wird. Erschließen wir die Leistungsfähigkeit von MQL5 mit einem einzigartigen Ansatz, der das Verständnis bei jedem Schritt sicherstellt. Dieser Artikel legt den Grundstein für die Beherrschung von MQL5, indem er die Erklärung jeder Codezeile hervorhebt und eine eindeutige und bereichernde Lernerfahrung bietet.
preview
DoEasy. Steuerung (Teil 26): Fertigstellung des WinForms-Objekts ToolTip und Weiterführung der Entwicklung der ProgressBar

DoEasy. Steuerung (Teil 26): Fertigstellung des WinForms-Objekts ToolTip und Weiterführung der Entwicklung der ProgressBar

In diesem Artikel werde ich die Entwicklung des ToolTip-Steuerelements abschließen und mit der Entwicklung des WinForms-Objekts der ProgressBar beginnen. Bei der Arbeit an Objekten werde ich universelle Funktionen für die Animation von Steuerelementen und deren Komponenten entwickeln.
preview
Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Dieser Artikel versucht, die Frage zu beantworten: Wie kann man die richtigen Expert Advisor auswählen? Welche sind die besten für unser Portfolio, und wie können wir die große Liste der auf dem Markt erhältlichen Handelsroboter filtern? In diesem Artikel werden zwanzig klare und starke Kriterien für die Ablehnung eines Expert Advisors vorgestellt. Jedes Kriterium wird vorgestellt und gut erklärt, um Ihnen zu helfen, eine nachhaltigere Entscheidung zu treffen und eine profitablere Expert Advisor-Sammlung für Ihre Gewinne aufzubauen.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5):  Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 5): Die Bollinger Bänder mit dem Keltner-Kanal — Indikatoren Signal

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der handeln kann (z.B. Aufträge eröffnen, schließen und verwalten, Trailing Stop Loss und Trailing Profit) für mehr als ein Symbolpaar aus nur einem Symbolchart. In diesem Artikel werden wir Signale von zwei Indikatoren verwenden, in diesem Fall Bollinger Bänder® und dem Keltner Kanal.
preview
Kategorientheorie in MQL5 (Teil 22): Ein anderer Blick auf gleitende Durchschnitte

Kategorientheorie in MQL5 (Teil 22): Ein anderer Blick auf gleitende Durchschnitte

In diesem Artikel versuchen wir, die in dieser Reihe behandelten Konzepte zu vereinfachen, indem wir uns auf einen einzigen Indikator beschränken, der am häufigsten vorkommt und wahrscheinlich am leichtesten zu verstehen ist. Der gleitende Durchschnitt. Dabei betrachten wir die Bedeutung und die möglichen Anwendungen von vertikalen natürlichen Transformationen.
preview
Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 25): Multi-Timeframe-Tests und -Handel

Strategien, die auf mehreren Zeitrahmen (Multi-Timeframe) basieren, können aufgrund der in den Assembly-Klassen verwendeten MQL5-Code-Architektur standardmäßig nicht in den vom Assistenten zusammengestellten Expert Advisors getestet werden. In einer Fallstudie mit dem quadratischen gleitenden Durchschnitt untersuchen wir, wie sich diese Einschränkung bei Strategien, die mehrere Zeitrahmen nutzen wollen, umgehen lässt.
preview
DoEasy. Steuerung (Teil 4): Paneel-Steuerung, Parameter für Padding und Dock

DoEasy. Steuerung (Teil 4): Paneel-Steuerung, Parameter für Padding und Dock

In diesem Artikel werde ich die Handhabung der Parameter von Padding (interne Einzüge/Rand auf allen Seiten eines Elements) und Dock (die Art und Weise, wie sich ein Objekt in seinem Container befindet) implementieren.
preview
Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Es gibt mehrere Arten von Algorithmen zur Selbstoptimierung von Handelsstrategien und Parametern. Diese Algorithmen werden zur automatischen Verbesserung von Handelsstrategien auf der Grundlage historischer und aktueller Marktdaten eingesetzt. In diesem Artikel werden wir uns eine davon mit Python und MQL5-Beispielen ansehen.
preview
Erstellen eines täglichen Drawdown-Limits EA in MQL5

Erstellen eines täglichen Drawdown-Limits EA in MQL5

Der Artikel beschreibt detailliert, wie die Erstellung eines Expert Advisors (EA) auf der Grundlage des Handelsalgorithmus umgesetzt werden kann. Dies hilft, das System im MQL5 zu automatisieren und die Kontrolle über den Daily Drawdown zu übernehmen.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 50): Verschieben der Standardindikatoren für mehrere Symbole und Perioden

Zeitreihen in der Bibliothek DoEasy (Teil 50): Verschieben der Standardindikatoren für mehrere Symbole und Perioden

In diesem Artikel wollen wir die Bibliotheksmethoden für die korrekte Anzeige von Mehrsymbol- und Mehrperioden-Standardindikatoren verbessern, wobei die Linien auf dem aktuellen Symbol-Chart mit einer in den Einstellungen festgelegten Verschiebung angezeigt werden. Außerdem sollten wir die Methoden für die Arbeit mit Standardindikatoren in Ordnung bringen und den redundanten Code für den Bibliotheksbereich im endgültigen Indikatorprogramm entferne.
preview
Der Indikator CCI: Upgrade und neue Funktionen

Der Indikator CCI: Upgrade und neue Funktionen

In diesem Artikel werde ich mich mit der Möglichkeit befassen, den CCI-Indikator zu verbessern. Außerdem werde ich eine Änderung des Indikators vorstellen.
preview
Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

In diesem Artikel werden wir uns mit dem Algorithmus befassen, der von allen bisher diskutierten Algorithmen die umstrittensten Ergebnisse zeigt - der Algorithmus der differentiellen Evolution (DE).
preview
Die Handelsstrategie Inverse Fair Value Gap

Die Handelsstrategie Inverse Fair Value Gap

Eine Inverse Fair Value Gap (IFVG) liegt vor, wenn der Kurs in eine zuvor ermittelte „Fair Value Gap“ abprallt und statt der erwarteten unterstützenden oder Widerstandsreaktion diese nicht einhält. Dieses Scheitern kann eine potenzielle Veränderung der Marktrichtung signalisieren und einen konträren Handelsvorteil bieten. In diesem Artikel werde ich meinen selbst entwickelten Ansatz zur Quantifizierung und Nutzung der inversen Fair Value Gap als Strategie für MetaTrader 5 Expert Advisors vorstellen.
preview
Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Neuronale Netze leicht gemacht (Teil 19): Assoziationsregeln mit MQL5

Wir fahren mit der Besprechung von Assoziationsregeln fort. Im vorigen Artikel haben wir den theoretischen Aspekt dieser Art von Problemen erörtert. In diesem Artikel werde ich die Implementierung der FP Growth-Methode mit MQL5 zeigen. Außerdem werden wir die implementierte Lösung anhand realer Daten testen.
preview
Prognose mit ARIMA-Modellen in MQL5

Prognose mit ARIMA-Modellen in MQL5

In diesem Artikel setzen wir die Entwicklung der CArima-Klasse zur Erstellung von ARIMA-Modellen fort, indem wir intuitive Methoden hinzufügen, die Vorhersagen ermöglichen.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil III)

Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil III)

Dieser Teil der Artikelserie ist der Integration von WhatsApp mit MetaTrader 5 für Benachrichtigungen gewidmet. Zum besseren Verständnis haben wir ein Flussdiagramm beigefügt und werden die Bedeutung von Sicherheitsmaßnahmen bei der Integration erörtern. Der Hauptzweck von Indikatoren besteht darin, die Analyse durch Automatisierung zu vereinfachen, und sie sollten Benachrichtigungsmethoden enthalten, um Nutzer zu alarmieren, wenn bestimmte Bedingungen erfüllt sind. Erfahren Sie mehr in diesem Artikel.
preview
Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5

Entwicklung eines Expert Advisors (EA) auf Basis der Consolidation Range Breakout Strategie in MQL5

Dieser Artikel beschreibt die Schritte zur Erstellung eines Expert Advisors (EA), der Kursausbrüche nach Konsolidierungsphasen ausnutzt. Durch die Identifizierung von Konsolidierungsbereichen und die Festlegung von Ausbruchsniveaus können Händler ihre Handelsentscheidungen auf der Grundlage dieser Strategie automatisieren. Der Expert Advisor zielt darauf ab, klare Einstiegs- und Ausstiegspunkte zu bieten und gleichzeitig falsche Ausbrüche zu vermeiden.
preview
Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Dieser Artikel, der Teil einer größeren Serie über die Implementierung der Kategorientheorie in MQL5 ist. Er befasst sich mit Funktoren. Wir untersuchen, wie eine lineare Ordnung mit Hilfe von Funktoren auf eine Menge abgebildet werden kann, indem wir zwei Datensätze betrachten, bei denen man normalerweise keinen Zusammenhang vermuten würde.
preview
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren

Zum Abschluss des Themas Arbeit mit Zeitreihen organisieren wir das Speichern, Suchen und Sortieren von Daten, die in Indikatorpuffern gespeichert sind, was die weitere Durchführung der Analyse auf der Grundlage von Werten der Indikatoren ermöglicht, die auf der Basis der Bibliothek in Programmen zu erstellen sind. Das allgemeine Konzept aller Kollektionsklassen der Bibliothek ermöglicht es, die benötigten Daten in der entsprechenden Kollektion leicht zu finden. Dementsprechend wird das Gleiche in der heute erstellten Klasse möglich sein.
preview
Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer

Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt. Mit ihrer Hilfe wird es möglich sein, Pufferdaten beliebiger Indikatoren zu sortieren und zu vergleichen, sowie andere ähnliche Daten miteinander zu vergleichen.
preview
Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Entfalten Sie Ihr Potenzial! Sie sind von Möglichkeiten umgeben. Entdecken Sie die 3 wichtigsten Geheimnisse, um Ihre MQL5-Reise in Gang zu bringen oder auf die nächste Stufe zu heben. Lassen Sie uns in die Diskussion über Tipps und Tricks für Anfänger und Profis gleichermaßen eintauchen.
preview
Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5

Bauen Sie Ihr erstes Modell einer Glass-Box mit Python und MQL5

Modelle des maschinellen Lernens sind schwer zu interpretieren, und das Verständnis dafür, warum unsere Modelle von unseren Erwartungen abweichen, ist von entscheidender Bedeutung, wenn wir einen Nutzen aus dem Einsatz dieser fortschrittlichen Techniken ziehen wollen. Ohne einen umfassenden Einblick in das Innenleben unseres Modells könnten wir Fehler nicht erkennen, die die Leistung unseres Modells beeinträchtigen, wir könnten Zeit mit der Entwicklung von Funktionen verschwenden, die nicht vorhersagbar sind, und langfristig riskieren wir, die Leistungsfähigkeit dieser Modelle nicht voll auszuschöpfen. Glücklicherweise gibt es eine ausgeklügelte und gut gewartete Komplettlösung, mit der wir genau sehen können, was unser Modell unter seiner Haube macht.