
Preise in der DoEasy-Bibliothek (Teil 62): Aktualisieren der Tick-Serien in Echtzeit, Vorbereitung für die Arbeit mit Markttiefe
In diesem Artikel werde ich die Aktualisierung der Tick-Daten in Echtzeit implementieren und die Symbol-Objektklasse für die Arbeit mit Markttiefe (Depth of Market, DOM) vorbereiten (das DOM selbst wird im nächsten Artikel implementiert).

Preise in der DoEasy-Bibliothek (Teil 61): Kollektion der Tickserien eines Symbols
Da ein Programm bei seiner Arbeit verschiedene Symbole verwenden kann, sollte für jedes dieser Symbole eine eigene Liste erstellt werden. In diesem Artikel werde ich solche Listen zu einer Tickdatenkollektion zusammenfassen. In der Tat wird dies eine reguläre Liste sein, die auf der Klasse des dynamischen Arrays von Zeigern auf Instanzen der Klasse CObject und ihrer Nachkommen der Standardbibliothek basiert.
Mehrschicht-Perceptron und Backpropagation-Algorithmus
Die Popularität dieser beiden Methoden wächst, sodass viele Bibliotheken in Matlab, R, Python, C++ und anderen entwickelt wurden, die einen Trainingssatz als Eingabe erhalten und automatisch ein passendes Netzwerk für das Problem erstellen. Versuchen wir zu verstehen, wie der Grundtyp des neuronalen Netzes funktioniert (einschließlich Ein-Neuronen-Perzeptron und Mehrschicht-Perzeptron). Wir werden einen spannenden Algorithmus betrachten, der für das Training des Netzes verantwortlich ist - Gradientenabstieg und Backpropagation. Bestehende komplexe Modelle basieren oft auf solchen einfachen Netzwerkmodellen.

Preise in der DoEasy-Bibliothek (Teil 60): Listen von Serien mit Symbol-Tickdaten
In diesem Artikel werde ich eine Liste zur Speicherung von Tickdaten eines einzelnen Symbols erstellen und deren Erstellung und Abruf der benötigten Daten in einem EA überprüfen. Tickdatenlisten, die für jedes verwendete Symbol individuell sind, werden weiterhin eine Kollektion von Tickdaten darstellen.
Neuronale Netze leicht gemacht (Teil 10): Multi-Head Attention
Wir haben zuvor den Mechanismus der Self-Attention (Selbstaufmerksamkeit) in neuronalen Netzen besprochen. In der Praxis verwenden moderne neuronale Netzwerkarchitekturen mehrere parallele Self-Attention-Threads, um verschiedene Abhängigkeiten zwischen den Elementen einer Sequenz zu finden. Betrachten wir die Implementierung eines solchen Ansatzes und bewerten seine Auswirkungen auf die Gesamtleistung des Netzwerks.
Neuronale Netze leicht gemacht (Teil 9): Dokumentation der Arbeit
Wir haben schon einen langen Weg hinter uns und der Code in unserer Bibliothek wird immer umfangreicher. Das macht es schwierig, den Überblick über alle Verbindungen und Abhängigkeiten zu behalten. Daher schlage ich vor, eine Dokumentation für den früher erstellten Code zu erstellen und diese mit jedem neuen Schritt zu aktualisieren. Eine gut vorbereitete Dokumentation wird uns helfen, die Integrität unserer Arbeit zu erkennen.

Zeitreihen in der Bibliothek DoEasy (Teil 59): Objekt zum Speichern der Daten eines Ticks
Ab diesem Artikel beginnen wir mit der Erstellung von Bibliotheksfunktionen für die Arbeit mit Preisdaten. Heute erstellen wir eine Objektklasse, die alle Preisdaten speichert, die mit einem weiteren Tick angekommen sind.
Neuronale Netze leicht gemacht (Teil 8): Attention-Mechanismen
In früheren Artikeln haben wir bereits verschiedene Möglichkeiten zur Organisation neuronaler Netze getestet. Wir haben auch Convolutional Networks (Faltungsnetze) besprochen, die aus Bildverarbeitungsalgorithmen entlehnt sind. In diesem Artikel schlage ich vor, sich den Attention-Mechanismen (Aufmerksamkeitsmechanismus) zuzuwenden, deren Erscheinen der Entwicklung von Sprachmodellen den Anstoß gab.

Verwendung von Tabellenkalkulationen zur Erstellung von Handelsstrategien
Der Artikel beschreibt die grundlegenden Prinzipien und Methoden, die es Ihnen ermöglichen, jede Strategie mithilfe von Tabellenkalkulationen (Excel, Calc, Google) zu analysieren. Die erzielten Ergebnisse werden mit dem MetaTrader 5-Tester verglichen.
Zeitreihen in der Bibliothek DoEasy (Teil 58): Zeitreihen der Datenpuffer von Indikatoren
Zum Abschluss des Themas Arbeit mit Zeitreihen organisieren wir das Speichern, Suchen und Sortieren von Daten, die in Indikatorpuffern gespeichert sind, was die weitere Durchführung der Analyse auf der Grundlage von Werten der Indikatoren ermöglicht, die auf der Basis der Bibliothek in Programmen zu erstellen sind. Das allgemeine Konzept aller Kollektionsklassen der Bibliothek ermöglicht es, die benötigten Daten in der entsprechenden Kollektion leicht zu finden. Dementsprechend wird das Gleiche in der heute erstellten Klasse möglich sein.
Websockets für MetaTrader 5
Vor der Einführung der Netzwerkfunktionen, die mit der aktualisierten MQL5-API zur Verfügung gestellt wurde, waren MetaTrader-Programme in ihrer Fähigkeit beschränkt, sich mit Websocket-basierten Diensten zu verbinden und eine Schnittstelle zu bilden. Aber natürlich hat sich das alles geändert. In diesem Artikel werden wir die Implementierung einer Websocket-Bibliothek in reinem MQL5 untersuchen. Eine kurze Beschreibung des Websocket-Protokolls wird zusammen mit einer Schritt-für-Schritt-Anleitung für die Verwendung der resultierenden Bibliothek gegeben.

Wie kann man $1.000.000 durch algorithmischen Handel verdienen? Nutzen Sie die Dienste von MQL5.com!
Alle Händler gehen auf den Markt mit dem Ziel, ihre erste Million Dollar zu verdienen. Wie kann man das ohne übermäßiges Risiko und großem Startkapital erreichen? Die Dienstleistungen von MQL5.com bieten diese Möglichkeit für Entwickler und Händler aus der ganzen Welt.

Zeitreihen in der Bibliothek DoEasy (Teil 57): Das Datenobjekt der Indikatorpuffer
Wir entwickeln in diesem Artikel ein Objekt, das alle Daten eines Puffers für einen Indikator enthalten wird. Solche Objekte werden für die Speicherung serieller Daten von Indikatorpuffern benötigt. Mit ihrer Hilfe wird es möglich sein, Pufferdaten beliebiger Indikatoren zu sortieren und zu vergleichen, sowie andere ähnliche Daten miteinander zu vergleichen.

Neuronale Netze leicht gemacht (Teil 6): Experimentieren mit der Lernrate des neuronalen Netzwerks
Wir haben zuvor verschiedene Arten von neuronalen Netzen zusammen mit ihren Implementierungen betrachtet. In allen Fällen wurden die neuronalen Netze mit der Gradientenverfahren trainiert, für die wir eine Lernrate wählen müssen. In diesem Artikel möchte ich anhand von Beispielen zeigen, wie wichtig eine richtig gewählte Rate ist und welchen Einfluss sie auf das Training des neuronalen Netzes hat.

Zeitreihen in der Bibliothek DoEasy (Teil 56): Nutzerdefiniertes Indikatorobjekt, das die Daten von Indikatorobjekten aus der Kollektion holt
In dem Artikel wird das Erstellen des nutzerdefinierten Indikatorobjekts für die Verwendung in EAs erklärt. Lassen Sie uns die Bibliotheksklassen leicht verbessern und Methoden hinzufügen, um Daten von Indikatorobjekten in EAs zu erhalten.

Praktische Anwendung von neuronalen Netzen im Handel. Python (Teil I)
In diesem Artikel werden wir die schrittweise Implementierung eines Handelssystems analysieren, das auf der Programmierung von tiefen neuronalen Netzen in Python basiert. Dies wird unter Verwendung der von Google entwickelten TensorFlow-Bibliothek für maschinelles Lernen durchgeführt. Außerdem werden wir die Keras-Bibliothek zur Beschreibung von neuronalen Netzen verwenden.

Zeitreihen in der Bibliothek DoEasy (Teil 55): Die Kollektionsklasse der Indikatoren
Der Artikel setzt die Entwicklung von Objektklassen für die Indikatoren und deren Kollektionen fort. Für jedes Indikatorobjekt erstellen wir seine Beschreibung und die richtige Kollektionsklasse für die fehlerfreie Speicherung und das Abrufen von Indikatorobjekten aus der Kollektionsliste.

Zeitreihen in der Bibliothek DoEasy (Teil 52): Plattformübergreifende Eigenschaft für Standardindikatoren mit einem Puffer für mehrere Symbole und Perioden
In diesem Artikel wird das Erstellen des Standardindikators Akkumulation/Distribution mehrere Symbole und Perioden behandelt. Wir verbessern die Bibliotheksklassen in Bezug auf die Indikatoren ein wenig, damit die für die veraltete Plattform MetaTrader 4 entwickelten Programme, die auf dieser Bibliothek basieren, beim Umstieg auf MetaTrader 5 normal funktionieren können.

Neuronale Netze leicht gemacht (Teil 3): Convolutional Neurale Netzwerke
Als Fortsetzung des Themas Neuronale Netze schlage ich vor, Convolutional Neurale Netzwerke (faltende Neuronale Netzwerke) zu besprechen. Diese Art von Neuronalen Netzwerken wird in der Regel für die Analyse von visuellen Bildern verwendet. In diesem Artikel werden wir die Anwendung dieser Netzwerke auf den Finanzmärkten besprechen.

Zeitreihen in der Bibliothek DoEasy (Teil 51): Zusammengesetzte Standardindikatoren für mehrere Symbole und Perioden
Der Artikel vervollständigt die Entwicklung von Objekten der Standardindikatoren für mehrere Symbole und Perioden. Anhand des Standardindikators Ichimoku Kinko Hyo analysieren wir beispielsweise die Erstellung von zusammengesetzten, nutzerdefinierten Indikatoren, die über gezeichnete Hilfspuffer zur Anzeige von Daten auf dem Chart verfügen.

Zeitreihen in der Bibliothek DoEasy (Teil 50): Verschieben der Standardindikatoren für mehrere Symbole und Perioden
In diesem Artikel wollen wir die Bibliotheksmethoden für die korrekte Anzeige von Mehrsymbol- und Mehrperioden-Standardindikatoren verbessern, wobei die Linien auf dem aktuellen Symbol-Chart mit einer in den Einstellungen festgelegten Verschiebung angezeigt werden. Außerdem sollten wir die Methoden für die Arbeit mit Standardindikatoren in Ordnung bringen und den redundanten Code für den Bibliotheksbereich im endgültigen Indikatorprogramm entferne.

Neuronale Netze leicht gemacht (Teil 2): Netzwerktraining und Tests
In diesem zweiten Artikel werden wir uns weiter mit Neuronalen Netzen befassen und ein Beispiel für die Verwendung unserer geschaffenen Klasse CNet in Expert Advisors besprechen. Wir werden mit zwei Modellen neuronaler Netze arbeiten, die ähnliche Ergebnisse sowohl hinsichtlich der Trainingszeit als auch der Vorhersagegenauigkeit zeigen.

Zeitreihen in der Bibliothek DoEasy (Teil 49): Standardindikatoren mit mehreren Puffern für mehrere Symbole und Perioden
Im aktuellen Artikel werde ich die Bibliotheksklassen verbessern, um die Fähigkeit zu implementieren, Standardindikatoren mit mehreren Symbolen und mehreren Perioden zu entwickeln, die mehrere Indikatorpuffer zur Anzeige ihrer Daten benötigen.

Zeitreihen in der Bibliothek DoEasy (Teil 48): Mehrperioden-Multisymbol-Indikatoren mit einem Puffer in einem Unterfenster
Der Artikel betrachtet ein Beispiel für die Erstellung von Mehrsymbol- und Mehrperioden-Standardindikatoren unter Verwendung eines einzigen Indikator-Puffers für die Konstruktion und die Darstellung im Indikator-Unterfenster. Ich werde die Bibliotheksklassen auf die Arbeit mit Standardindikatoren vorbereiten, die im Hauptfenster des Programms arbeiten und mehr als einen Puffer für die Anzeige ihrer Daten haben.

Ein System von Sprachbenachrichtigungen für Ereignisse und Signale im Handel
Heutzutage spielen Sprachassistenten eine herausragende Rolle im menschlichen Leben, da wir häufig Navigatoren, Sprachsuche und Übersetzer einsetzen. In diesem Artikel werde ich versuchen, ein einfaches und nutzerfreundliches System von Sprachbenachrichtigungen für verschiedene Handelsereignisse, Marktzustände oder durch Handelssignale erzeugte Signale zu entwickeln.

Zeitreihen in der Bibliothek DoEasy (Teil 46): Mehrperioden-Multisymbol-Indikatorpuffer
In diesem Artikel werde ich die Klassen der Objekte der Indikatorpuffer verbessern, um im Multisymbolmodus arbeiten zu können. Dies wird den Weg für die Erstellung von Multisymbol- und Mehrperioden-Indikatoren in benutzerdefinierten Programmen ebnen. Ich werde den berechneten Pufferobjekten die fehlende Funktionalität hinzufügen, die es uns ermöglicht, multisymbol- und mehrperiodische Standardindikatoren zu erstellen.

Zeitreihen in der Bibliothek DoEasy (Teil 45): Puffer für Mehrperiodenindikator
In diesem Artikel werde ich mit der Verbesserung der Indikatorpufferobjekte und der Sammelklasse für die Arbeit in Mehrperioden- und Mehrsymbolmodi beginnen. Ich werde den Betrieb von Pufferobjekten für den Empfang und die Anzeige von Daten aus einem beliebigen Zeitrahmen auf dem aktuellen Symbolchart bespreche.

Praktische Anwendung von neuronalen Netzen im Handel Es wird Zeit zum Üben
Der Artikel enthält eine Beschreibung und Anleitungen für den praktischen Einsatz von Modulen für neuronale Netzwerke auf der Matlab-Plattform. Er behandelt auch die Hauptaspekte der Erstellung eines Handelssystems unter Verwendung des Neuronalen Netzwerkmoduls. Um den Komplex in einem Artikel vorstellen zu können, musste ich ihn so modifizieren, dass mehrere Funktionen des neuronalen Netzwerkmoduls in einem Programm kombiniert werden konnten.

Praktische Anwendung von neuronalen Netzen im Handel
In diesem Artikel werden wir die Hauptaspekte der Integration von neuronalen Netzen und dem Handelsterminal betrachten, mit dem Ziel, einen voll ausgestatteten Handelsroboter zu schaffen.

Ein manuelles Chart- und Handelswerkzeug (Teil I). Vorbereitung: Strukturbeschreibung und die Hilfsklasse
Dies ist der erste Artikel in einer Serie, in der ich ein Werkzeug beschreiben werde, das die manuelle Verwendung von Chartgrafiken mit Hilfe von Tastaturkürzeln ermöglicht. Es ist sehr praktisch: man drückt eine Taste und eine Trendlinie erscheint, drückt man eine andere Taste — so entsteht ein Fibonacci-Fächer mit den benötigten Parametern. Es wird auch möglich sein, den Zeitrahmen zu wechseln, die Ebenen neu anzuordnen oder alle Objekte aus dem Diagramm zu löschen.

Zeitreihen in der Bibliothek DoEasy (Teil 44): Kollektionsklasse der Objekte von Indikatorpuffern
Der Artikel befasst sich mit der Erstellung einer Kollektionsklasse der Objekte von Indikatorpuffern. Ich werde die Fähigkeit testen, eine beliebige Anzahl von Puffern für Indikatoren zu erstellen und mit ihnen zu arbeiten (die maximale Anzahl von Indikatorpuffern, die in MQL erstellt werden können, beträgt 512).

Nativer Twitter-Client: Teil 2
Ein als MQL-Klasse implementierter Twitter-Client, mit dem Sie Tweets mit Fotos versenden können. Alles, was Sie brauchen, ist eine einzige, in sich geschlossene Include-Datei und schon können Sie all Ihre wunderbaren Charts und Signale twittern.

Nativer Twitter-Client für MT4 und MT5 ohne DLL
Wollten Sie schon immer auf Tweets zugreifen und/oder Ihre Handelssignale auf Twitter posten? Suchen Sie nicht mehr, diese fortlaufenden Artikelserien zeigen Ihnen, wie Sie es ohne die Verwendung einer DLL machen können. Genießen Sie die Reise der Implementierung der Tweeter-API mit MQL. In diesem ersten Teil werden wir dem glorreichen Weg der Authentifizierung und Autorisierung beim Zugriff auf die Twitter-API folgen.

MQL als Darstellungsmittel für graphische Schnittstellen von MQL-Programmen (Teil 3). Formular-Designer
In diesem Artikel schließen wir die Beschreibung unseres Konzepts zum Aufbau der Fensterschnittstelle von MQL-Programmen unter Verwendung der Strukturen von MQL ab. Ein spezialisierter grafischer Editor erlaubt es, das Layout, das aus den Basisklassen der GUI-Elemente besteht, interaktiv zu erstellen und es dann in die MQL-Beschreibung zu exportieren, um es in Ihrem MQL-Projekt zu verwenden. Hier stellen wir das interne Design des Editors und ein Benutzerhandbuch vor. Die Quellcodes sind beigefügt.

Zeitreihen in der Bibliothek DoEasy (Teil 43): Klassen der Objekte von Indikatorpuffern
Der Artikel beschäftigt sich mit der Entwicklung von Indikatorpuffer-Objektklassen, abgeleitet vom abstrakten Pufferobjekt, um die Deklaration zu vereinfachen und mit Indikatorpuffern zu arbeiten, während gleichzeitig nutzerdefinierte Indikatorprogramme auf der Grundlage der Bibliothek DoEasy erstellt werden.

Zeitreihen in der Bibliothek DoEasy (Teil 41): Beispiel eines Multisymbol- und Mehrperiodenindikators
In diesem Artikel entwickeln wir das Beispiel eines Multisymbol- und Mehrperiodenindikators, der die Zeitreihenklassen der DoEasy-Bibliothek verwendet und das Chart eines ausgewählten Währungspaares in einem ausgewählten Zeitrahmen als Kerzen in einem Unterfenster anzeigt. Ich werde die Bibliotheksklassen ein wenig modifizieren und eine separate Datei erstellen, zum Speichern von Enumerationen für die Programmeingaben und für die Auswahl einer Kompilierungssprache.

Kontinuierliche Walk-Forward-Optimierung (Teil 7): Einbinden des logischen Teils des Auto-Optimizer mit Grafiken und Steuerung
Dieser Artikel beschreibt die Verbindung des grafischen Teils des Auto-Optimizers mit seinem logischen Teil. Er betrachtet den Prozess des Optimierungsstarts, von einem Tastenklick bis zur Aufgabenumleitung zum Optimierungsmanager.

Zeitreihen in der Bibliothek DoEasy (Teil 40): Bibliotheksbasierte Indikatoren - Aktualisierung der Daten in Echtzeit
Der Artikel befasst sich mit der Entwicklung eines einfachen Mehrperiodenindikators auf der Grundlage der DoEasy-Bibliothek. Wir verbessern die Klasse der Zeitreihen so, dass sie Daten aus beliebigen Zeitrahmen empfangen können, um sie in der aktuellen Diagrammperiode anzuzeigen.

MQL als Darstellungsmittel für graphische Schnittstellen von MQL-Programmen. Teil 2
In diesem Beitrag wird die neue Konzeption zur Beschreibung der Fenster-Schnittstelle von MQL-Programmen anhand der Strukturen von MQL weiter überprüft. Die automatische Erstellung einer GUI auf der Grundlage des MQL-Markups bietet zusätzliche Funktionalität für die Zwischenspeicherung und dynamische Generierung der Elemente und die Steuerung der Stile und neuen Schemata für die Verarbeitung der Ereignisse. Beigefügt ist eine erweiterte Version der Standardbibliothek von Steuerelementen.

Zeitreihen in der Bibliothek DoEasy (Teil 39): Bibliotheksbasierte Indikatoren - Vorbereitung der Daten und Zeitreihen
Der Artikel befasst sich mit der Anwendung der DoEasy-Bibliothek zur Erstellung von Mehrsymbol- und Mehrperiodenindikatoren. Wir werden die Bibliotheksklassen auf die Arbeit mit Indikatoren vorbereiten und die Erstellung von Zeitreihen testen, die als Datenquellen in Indikatoren verwendet werden können. Wir werden auch das Erstellen und Versenden von Zeitreihen-Ereignissen implementieren.