市场模拟(第八部分):套接字(二)
用套接字实现一些实用功能怎么样?在今天的文章中,我们将开始创建一个迷你聊天室。让我们一起来看看这是怎么做到的 —— 这会非常有趣。请注意,此处提供的代码仅用于教育目的。它不应用于商业目的或现成的应用程序,因为它不提供数据传输安全性,并且可以访问通过套接字传输的内容。
利用 MQL5 经济日历进行交易(第 8 部分):通过智能事件过滤和有针对性的日志来优化新闻驱动策略的回测
在本文中,我们利用智能事件过滤和有针对性的日志来优化我们的经济日历,以便在实时和离线模式下实现更快、更清晰的回测。我们简化了事件处理程序,并将日志集中在关键交易和仪表盘事件上,从而增强了策略的可视化效果。这些改进使得对新闻驱动型交易策略进行顺畅的测试和优化成为可能。
价格行为分析工具包开发(第 22 部分):相关性仪表盘
该工具是一个相关性仪表盘,用于计算并显示多个货币对之间的实时相关系数。通过可视化货币对之间的相互走势,它为您的价格行为分析提供了宝贵的视角,并帮助您预测跨市场的动态。继续阅读以探索其功能和应用。
您应当知道的 MQL5 向导技术(第 57 部分):搭配移动平均和随机振荡器的监督训练
移动平均线和随机振荡器是十分常用的指标,因其滞后性质,一些交易者或许较少使用。在一个三部分的“迷你序列”中,研究机器学习的三大主要形式,我们会考证对这些指标的偏见是否合理,或者它们可能占据优势。我们经由向导汇编的智能系统来进行实证。
MQL5交易策略自动化(第十七部分):借助动态仪表盘精通网格马丁格尔(Grid-Mart)短线交易策略
在本文中,我们将探讨网格马丁格尔(Grid-Mart)短线交易策略,并阐述如何在MQL5中实现该策略的自动化,同时配备一个动态仪表盘以提供实时交易分析。我们将详细介绍该策略基于网格的马丁格尔逻辑以及风险管理功能。此外,我们还将指导如何进行回测和部署,以确保策略的稳健表现。
外汇套利交易:分析合成货币的走势及其均值回归
在本文中,我们将使用Python和MQL5来分析合成货币的走势,并探讨当今外汇套利的可行性。我们还会考虑现成的用于分析合成货币的Python代码,并分享更多关于外汇中合成货币是什么的细节。
从新手到专家:使用 MQL5 制作动画新闻标题(四) — 本地托管 AI 模型市场洞察
在今天的讨论中,我们将探讨如何自行托管开源 AI 模型,并使用它们来生成市场洞察。这是我们持续扩展 News Headline EA 的一部分努力,引入了 AI 洞察通道,将其转变为多集成辅助工具。升级后的 EA 旨在通过日历事件、财经突发新闻、技术指标以及现在的 AI 生成的市场观点,让交易者随时了解最新动态,从而为交易决策提供及时、多样化和智能的支持。加入我们的讨论,我们将探讨实用的集成策略,以及 MQL5 如何与外部资源协作,构建强大而智能的交易工作终端。
外汇套利交易:一款轻松上手的简单合成做市商机器人
今天,来了解一下我的首个套利机器人——一款针对合成资产的流动性提供者(如果这么称呼它也算恰当的话)。目前,该机器人作为一个模块,在一套大型机器学习系统中成功运行,但我从云端调出了一个旧版的外汇套利EA,让我们一起来看一下,并思考如今能用它做些什么。
神经类群优化算法 (NOA)
一种新的生物启发的优化元启发式算法——NOA(Neuroboids Optimization Algorithm,神经类群优化算法),结合了集体智能和神经网络的原理。与传统方法不同,该算法使用了一个由具备自学习能力的“神经类群(neuroboids)”组成的群体,每个神经类群都拥有自己的神经网络,能够实时调整其搜索策略。本文揭示了该算法的架构、代理的自学习机制,以及这种混合方法在解决复杂优化问题方面的应用前景。
从新手到专家:使用 MQL5 制作动画新闻标题 (三) — 指标洞察
在本文中,我们将通过引入专门的指标洞察通道来推进新闻标题EA —— 一个紧凑的图表显示,显示由RSI、MACD、随机震荡指标和 CCI 等流行指标生成的关键技术信号。这种方法消除了 MetaTrader 5 终端上多个指标子窗口的需要,使您的工作空间保持干净高效。通过利用 MQL5 API 在后台访问指标数据,我们可以使用自定义逻辑实时处理和可视化市场洞察。加入我们,探索如何在 MQL5 中操纵指标数据,以创建一个智能且节省空间的滚动洞察系统,所有这些都在您的交易图表上的一个水平通道内。
数据科学和机器学习(第 34 部分):时间序列分解,剖析股票市场的核心
在一个充斥着杂乱且不可预测数据的世界里,识别有意义的形态可能颇具挑战性。在本文中,我们将探讨季节性分解,这是一种强力分析技术,有助于把数据拆分为关键成分:趋势、季节性形态、和噪声。以该途径拆解数据,我们能够揭示隐藏的洞见,并配以更清晰、更易解读的信息工作。
用Python构建一个远程外汇风险管理系统
我们将用Python构建一个远程外汇风险管理系统,并逐步将其部署到服务器上。在本文中,我们将学习如何通过编程管理外汇风险,以及如何避免外汇账户资金再次损失殆尽。
从 MQL5 向 Discord 发送消息,创建 Discord-MetaTrader 5 机器人
与 Telegram 类似,Discord 可以使用其通信 API 以 JSON 格式接收信息和消息。在本文中,我们将探讨如何使用 Discord API 将 MetaTrader 5 的交易信号和更新发送到您的 Discord 交易社区。
成功餐饮经营者算法(SRA)
成功餐饮经营者算法(SRA)是一种受餐饮业管理原则启发的创新优化方法。与传统方法不同,SRA不会直接淘汰劣质解,而是通过融合优质解的元素对其进行改进。该算法在优化问题中展现出极具竞争力的表现,并为平衡探索与利用提供了全新视角。
从新手到专家:使用 MQL5 制作动画新闻标题(二)
今天,我们又向前迈进了一步,整合了一个外部新闻 API 作为我们的 News Headline EA 的头条新闻来源。在这个阶段,我们将探索各种新闻来源 —— 包括成熟的和新兴的 —— 并学习如何有效地访问它们的 API。我们还将介绍如何将检索到的数据解析成适合在我们的 EA 交易中显示的格式。加入讨论,我们将探索直接在图表上访问新闻标题和经济日历的好处,所有这些都在一个紧凑、不干扰用户的界面中。
从新手到专家:使用 MQL5 制作动画新闻标题(一)
在 MetaTrader 5 终端上进行交易时,新闻可访问性是一个关键因素。虽然有很多新闻 API 可用,但许多交易者在访问这些 API 并将其有效集成到他们的交易环境中时仍面临挑战。在本次讨论中,我们的目标是开发一种简化的解决方案,将新闻直接呈现在图表上 —— 也就是最需要新闻的地方。我们将通过构建一个新闻标题 EA 来实现这一目标,该 EA 可以监控并显示来自 API 源的实时新闻更新。
台球优化算法(BOA)
BOA方法灵感源自经典的台球运动,它将寻求最优解的过程模拟为一场游戏:球体致力于落入代表最佳结果的球袋之中。本文将探讨BOA的基本原理、数学模型及其在解决各类优化问题中的效率。
MQL5 简介(第 17 部分):构建趋势反转 EA 交易
本文教初学者如何在 MQL5 中构建一个基于图表形态识别的 EA 交易系统,该系统利用趋势线突破和反转进行交易。通过学习如何动态检索趋势线值并将其与价格走势进行比较,读者将能够开发出能够识别和交易图表形态(如上升和下降趋势线、通道、楔形、三角形等)的 EA 交易。
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)
我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
斐波那契(Fibonacci)数列在外汇交易中的应用(第一部分):探究价格与时间的关系
市场如何遵循基于斐波那契数列的关系?在斐波那契数列中,每个后续数字都等于前两个数字之和(1, 1, 2, 3, 5, 8, 13, 21……),该数列不仅描述了兔子种群的增长情况。我们将考虑毕达哥拉斯的假设,即世间万物都遵循某种数字关系……
交易中的神经网络:基于 ResNeXt 模型的多任务学习
基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
MQL5 MVC模式中表格的视图组件:基础图形元素
本文介绍了在MQL5中实现MVC(模型-视图-控制器)范式下表格视图组件时,开发基础图形元素的过程。这是关于视图组件的首篇文章,也是为MetaTrader 5客户端开发表格功能系列文章的第三篇。
使用 MetaTrader 5 Python 构建类似 MQL5 的交易类
MetaTrader 5 Python 包提供了一种使用 Python 语言为 MetaTrader 5 平台构建交易应用程序的简便方法。虽然它是一个强大而有用的工具,但在创建算法交易解决方案方面,该模块不如 MQL5 编程语言那么容易。在本文中,我们将构建类似于 MQL5 中提供的交易类,以创建类似的语法,使在 Python 中创建交易机器人比在 MQL5 中更容易。
在MQL5中创建交易管理员面板(第十一部分):现代化功能通信接口(1)
今天,我们将聚焦于升级通信面板的消息交互界面,使其符合现代高性能通信应用的标准。这一改进将通过更新CommunicationsDialog类来实现。欢迎加入本文的探讨与讨论,我们将共同剖析关键要点,并规划使用MQL5推进界面编程的下一步方向。
从新手到专家:自动几何分析系统
几何形态为交易者提供了一种简洁的方式来解读价格走势。许多分析师手工绘制趋势线、矩形和其他形状,然后根据他们看到的形态做出交易决策。在本文中,我们探索了一种自动化的替代方案:利用 MQL5 来检测和分析最流行的几何形态。我们将分解方法论,讨论实现细节,并强调自动形态识别如何提高交易者的市场洞察力。
MQL5开发专属调试与性能分析工具(第一部分):高级日志记录
学习如何为MQL5实现一个强大的自定义日志框架,该框架超越简单的Print()语句,支持日志严重级别、多输出处理器和自动文件轮转——所有功能均可动态配置。将单例CLogger与ConsoleLogHandler(控制台日志处理器)和FileLogHandler(文件日志处理器)集成,在“Experts”选项卡和持续的文件中捕获带时间戳的内容日志。通过清晰、可定制的日志格式和集中控制,简化智能交易系统(EA)的调试与性能跟踪工作。
MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈
本文通过引入拖拽面板功能和悬停交互效果,对交易助手工具进行全面升级,使界面操作更直观且响应更迅速。我们优化了工具的实时订单验证机制,确保交易参数能根据市场价格动态校准。同时,我们通过回测验证了这些改进的可靠性。
MQL5 简介(第 16 部分):利用技术图表形态构建 EA 交易
本文向初学者介绍如何构建一个 MQL5 EA 交易,该系统可以识别和交易经典的技术图表形态 —— 头肩顶形态。它涵盖了如何利用价格行为来检测形态,如何在图表上绘制形态,如何设置入场点、止损点和止盈点,以及如何根据形态自动执行交易。
您应当知道的 MQL5 向导技术(第 56 部分):比尔·威廉姆斯(Bill Williams)分形
比尔·威廉姆斯(Bill Williams)的分形是一个强有力的指标,在价格图标上初现时很容易被忽视。它出现得过于繁忙,大概也不够精锐。我们的靶标是配以由向导汇编的智能系统针对所有指标进行前向漫游测试,检验其在各种形态下能够取得怎样的成果,从而揭开该指标的面纱。
MQL5 中的高级订单执行算法:TWAP、VWAP 和冰山订单
MQL5 框架通过统一的执行管理器和性能分析器,将机构级执行算法(TWAP、VWAP、冰山订单)带给散户交易者,从而实现更流畅、更精确的订单切片和分析。
突破机器学习的局限(第一部分):缺乏可互操作的度量指标
无论以何种形式构建可靠的人工智能(AI)交易策略,都有一种强大且普遍存在的力量,正悄然地侵蚀着我们社区的集体努力,本文提到,我们所面临的部分问题,源于对“最优实践”的盲目遵循。通过为读者提供基于现实市场的简单证据,我们说明为何必须摒弃这种做法,转而采用特定领域内的最优实践,这样一来,我们的社区才有可能重振AI的潜在力量。
MQL5交易工具(第一部分):构建交互式可视化挂单交易助手工具
本文将介绍如何使用MQL5开发一款交互式交易助手工具,旨在简化外汇交易中的挂单操作流程。我们首先阐述其核心设计理念:通过用户友好的图形界面(GUI),实现图表上直观设置入场点、止损位和止盈位的功能。此外,本文将详细说明MQL5代码实现过程及回测验证方法,确保工具的可靠性,并为后续高级功能开发奠定基础。
您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC
强化学习中的回放缓冲区对于像 DQN 或 SAC 这样的无政策算法尤为重要。这样就会聚光在该记忆缓冲区的抽样过程。举例,SAC 默认选项从该缓冲区随机选择,而优先经验回放缓冲区则基于 TD 分数从缓冲区中抽样对其优调。我们回顾强化学习的重要性,并一如既往,在由向导汇编的智能系统中验证这一假设(而‘非交叉验证)。
价格行为分析工具包开发(第二十一部分):市场结构反转检测工具
市场结构反转检测智能交易系统(EA) 是您洞察市场情绪变化的得力助手,能够实时监控市场结构的潜在反转信号。该工具通过基于平均真实波幅(ATR)的动态阈值,精准识别市场结构的反转点,并在图表上以清晰的可视化指标标记每一处更高低点和更低高点。依托MQL5的极速执行能力与高度灵活的API接口,该工具提供实时动态分析,可以自动调整显示效果,确保图表清晰易读,并提供实时数据仪表板,实时统计反转次数与时间分布。此外,还支持自定义声音警报和移动端推送通知,确保关键信号无遗漏,通过将原始价格波动转化为可执行的交易策略,帮助您在瞬息万变的市场中抢占先机。
MQL5 简介(第 15 部分):构建自定义指标的初学者指南(四)
在本文中,您将学习如何在 MQL5 中构建价格行为指标,重点关注低点 (L)、高点 (H)、更高的低点 (HL)、更高的高点 (HH)、更低的低点 (LL) 和更低的高点 (LH) 等关键点,以分析趋势。你还将学习如何识别溢价和折价区域,标记 50% 回撤位,以及如何使用风险回报比来计算利润目标。文章还介绍了如何根据趋势结构确定入场点、止损 (SL) 和止盈 (TP) 水平。
在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面
本文探讨了动态 MQL5 图形界面,利用双三次插值技术在交易图表上实现高质量的图像缩放。我们详细介绍了灵活的定位选项,支持通过自定义偏移量实现动态居中或位置定位。
MQL5交易策略自动化(第十六部分):基于结构突破(BoS)价格行为的午夜区间突破策略
本文将介绍如何在MQL5中实现午夜区间突破结合结构突破(BoS)价格行为策略自动化,并详细说明突破检测与交易执行的代码逻辑。我们为入场、止损和止盈设定了精确的风险参数。包含回测与优化方法,助力实战交易。