Artículos de programación MQL4 y MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Del básico al intermedio: Unión (II)

Del básico al intermedio: Unión (II)

Este será un artículo muy divertido y bastante curioso, en varios aspectos. Abordará la unión, para resolver un problema discutido anteriormente. Además, exploraremos algunas situaciones inusuales que pueden surgir al usar una unión en aplicaciones. El contenido expuesto aquí tiene, pura y simplemente, una finalidad didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Del básico al intermedio: Unión (I)

Del básico al intermedio: Unión (I)

En este artículo, veremos qué es una unión. Aquí, mediante la experimentación, analizaremos las primeras construcciones en las que podría utilizarse una unión. No obstante, lo que se mostrará aquí es solo la parte básica de todo un conjunto de conceptos e información que se explorará más a fondo en artículos futuros. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea aprender y estudiar los conceptos mostrados.
preview
Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)

Redes neuronales en el trading: Detección de objetos con reconocimiento de escena (HyperDet3D)

Le proponemos que conozca un nuevo enfoque de la detección de objetos mediante hiper-redes: una hiper-red de generación de coeficientes de peso para el modelo básico que permite tener en cuenta las peculiaridades del estado actual del mercado. Este enfoque mejora la precisión de las previsiones adaptando el modelo a las distintas condiciones comerciales.
preview
Uso conjunto de PSAR, Heiken Ashi y Deep Learning para el trading

Uso conjunto de PSAR, Heiken Ashi y Deep Learning para el trading

Este proyecto explora la fusión del aprendizaje profundo y el análisis técnico para probar estrategias de trading en forex. Se utiliza un script en Python para experimentar rápidamente, empleando un modelo ONNX junto con indicadores tradicionales como PSAR, SMA y RSI para predecir los movimientos del EURUSD. A continuación, un script de MetaTrader 5 lleva esta estrategia a un entorno en vivo, utilizando datos históricos y análisis técnicos para tomar decisiones de negociación informadas. Los resultados de las pruebas retrospectivas indican un planteamiento prudente pero coherente, centrado en la gestión del riesgo y el crecimiento constante más que en la búsqueda agresiva de beneficios.
preview
Algoritmo de tiro con arco - Archery Algorithm (AA)

Algoritmo de tiro con arco - Archery Algorithm (AA)

Este artículo detalla un algoritmo de optimización inspirado en el tiro con arco, centrado en el uso del método de la ruleta como mecanismo de selección de zonas prometedoras para las "flechas". Este método nos permite evaluar la calidad de las soluciones y seleccionar las más prometedoras para seguir estudiándolas.
preview
Soluciones sencillas para trabajar cómodamente con indicadores

Soluciones sencillas para trabajar cómodamente con indicadores

En este artículo le contaremos cómo crear un panel simple para cambiar la configuración del indicador directamente desde el gráfico, y qué cambios se deberán introducir en el indicador para conectar este panel. Este artículo está dirigido exclusivamente a aquellos que acaban de empezar a familiarizarse con MQL5.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte III): Mejora de la interfaz gráfica de usuario con estilización visual (I)

Creación de un Panel de administración de operaciones en MQL5 (Parte III): Mejora de la interfaz gráfica de usuario con estilización visual (I)

En este artículo, nos centraremos en el estilo visual de la interfaz gráfica de usuario (GUI) de nuestro Panel de Administrador de Trading utilizando MQL5. Exploraremos diversas técnicas y funciones disponibles en MQL5 que permiten personalizar y optimizar la interfaz, garantizando que satisfaga las necesidades de los operadores al tiempo que mantiene una estética atractiva.
preview
Cómo implementar la optimización automática en los asesores expertos de MQL5

Cómo implementar la optimización automática en los asesores expertos de MQL5

Guía paso a paso para la optimización automática en MQL5 para Asesores Expertos. Cubriremos la lógica de optimización robusta, las mejores prácticas para la selección de parámetros y cómo reconstruir estrategias con pruebas retrospectivas. Además, se discutirán métodos de nivel superior, como la optimización del avance, para mejorar su enfoque comercial.
preview
Ejemplo de Análisis de Redes de Causalidad (CNA), Control Óptimo de Modelos Estocásticos (SMOC) y la Teoría de Juegos de Nash con Aprendizaje Profundo (Deep Learning)

Ejemplo de Análisis de Redes de Causalidad (CNA), Control Óptimo de Modelos Estocásticos (SMOC) y la Teoría de Juegos de Nash con Aprendizaje Profundo (Deep Learning)

Agregaremos Deep Learning a esos tres ejemplos que se publicaron en artículos anteriores y compararemos los resultados con los anteriores. El objetivo es aprender cómo agregar DL (Deep Learning) a otro EA.
preview
Características del Wizard MQL5 que debe conocer (Parte 38): Bandas de Bollinger

Características del Wizard MQL5 que debe conocer (Parte 38): Bandas de Bollinger

Las bandas de Bollinger son un indicador de envolvente muy común utilizado por muchos traders para colocar y cerrar operaciones manualmente. Examinamos este indicador considerando las diferentes señales posibles que genera, y vemos cómo se podrían poner en uso en un Asesor Experto montado por un asistente.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 6): Añadir botones interactivos en línea

En este artículo, integramos botones interactivos en línea en un Asesor Experto MQL5, permitiendo el control en tiempo real a través de Telegram. Cada pulsación de botón desencadena acciones específicas y envía respuestas al usuario. También modularizamos las funciones para manejar los mensajes de Telegram y las consultas de devolución de llamada de forma eficiente.
preview
Aplicación de la selección de características localizadas en Python y MQL5

Aplicación de la selección de características localizadas en Python y MQL5

Este artículo explora un algoritmo de selección de características introducido en el artículo 'Local Feature Selection for Data Classification' de Narges Armanfard et al. El algoritmo se implementa en Python para construir modelos clasificadores binarios que pueden integrarse con aplicaciones de MetaTrader 5 para la inferencia.
preview
Aprendiendo MQL5 de principiante a profesional (Parte V): Operadores básicos para redirigir el flujo de comandos

Aprendiendo MQL5 de principiante a profesional (Parte V): Operadores básicos para redirigir el flujo de comandos

Este artículo trata de los operadores básicos para cambiar el flujo de ejecución: condiciones, ciclos y el operador switch. El uso de estos operadores añadirá la capacidad de que las funciones que creemos actúen de forma "inteligente".
preview
Introducción a Connexus (Parte 1): ¿Cómo utilizar la función WebRequest?

Introducción a Connexus (Parte 1): ¿Cómo utilizar la función WebRequest?

Este artículo es el comienzo de una serie de desarrollos para una biblioteca llamada “Connexus” para facilitar las solicitudes HTTP con MQL5. El objetivo de este proyecto es brindarle al usuario final esta oportunidad y mostrarle cómo utilizar esta biblioteca auxiliar. Mi intención era hacerlo lo más sencillo posible para facilitar el estudio y ofrecer la posibilidad de desarrollos futuros.
preview
Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

Redes neuronales en el trading: Transformer para nubes de puntos (Pointformer)

En este artículo analizaremos los algoritmos necesarios para utilizar métodos de atención en la resolución de problemas de detección de objetos en nubes de puntos. La detección de objetos en nubes de puntos es bastante importante para muchas aplicaciones del mundo real.
preview
Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Redes neuronales en el trading: Aprendizaje jerárquico de características en nubes de puntos

Seguimos estudiando los algoritmos para extraer características de una nube de puntos. Y en este artículo, nos familiarizaremos con los mecanismos para mejorar la eficacia del método PointNet.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte II): Mejorar la capacidad de respuesta y la rapidez de los mensajes

Creación de un Panel de administración de operaciones en MQL5 (Parte II): Mejorar la capacidad de respuesta y la rapidez de los mensajes

En este artículo, vamos a mejorar la capacidad de respuesta del Panel de administración que hemos creado anteriormente. Además, exploraremos la importancia de los mensajes rápidos en el contexto de las señales de negociación.
preview
Ejemplo de optimización estocástica y control óptimo

Ejemplo de optimización estocástica y control óptimo

Este Asesor Experto, llamado SMOC, que significa Stochastic Model Optimal Control (Modelo Estocástico de Control Óptimo), es un ejemplo sencillo de un avanzado sistema algorítmico de trading para MetaTrader 5. Utiliza una combinación de indicadores técnicos, control predictivo de modelos y gestión dinámica de riesgos para tomar decisiones comerciales. El EA incorpora parámetros adaptativos, dimensionamiento de posiciones basado en la volatilidad y análisis de tendencias para optimizar su rendimiento en diferentes condiciones de mercado.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones

Redes neuronales en el trading: Transformador contrastivo de patrones

El transformador contrastivo de patrones analiza la situación del mercado tanto a nivel de velas individuales como de patrones completos, lo cual contribuye a mejorar la calidad de modelado de las tendencias del mercado, mientras que el uso del aprendizaje por contraste para emparejar las representaciones de velas y patrones conduce a la autorregulación y a la mejora de la precisión de la predicción.
preview
Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

En este artículo, desarrollamos un Asesor Experto de trading de ejecución rápida en MQL5, aprovechando los indicadores SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) para crear una estrategia de trading reactiva y eficiente. Detallamos la implementación de la estrategia, incluyendo el uso de los indicadores, la generación de señales y el proceso de prueba y optimización.
preview
Redes neuronales en el trading: Análisis de la situación del mercado usando el Transformador de patrones

Redes neuronales en el trading: Análisis de la situación del mercado usando el Transformador de patrones

A la hora de analizar la situación del mercado con nuestros modelos, el elemento clave es la vela. No obstante, sabemos desde hace tiempo que las velas pueden ayudar a predecir los movimientos futuros de los precios. Y en este artículo aprenderemos un método que nos permitirá integrar ambos enfoques.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 5): Envío de comandos desde Telegram a MQL5 y recepción de respuestas en tiempo real

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 5): Envío de comandos desde Telegram a MQL5 y recepción de respuestas en tiempo real

En este artículo, creamos varias clases para facilitar la comunicación en tiempo real entre MQL5 y Telegram. Nos centramos en recuperar comandos de Telegram, decodificarlos e interpretarlos y enviar respuestas apropiadas. Al final, nos aseguramos de que estas interacciones se prueben eficazmente y estén operativas dentro del entorno comercial.
preview
Redes neuronales en el trading: Transformador con codificación relativa

Redes neuronales en el trading: Transformador con codificación relativa

El aprendizaje autosupervisado puede ser una forma eficaz de analizar grandes cantidades de datos no segmentados. El principal factor de éxito es la adaptación de los modelos a las particularidades de los mercados financieros, lo cual contribuye a mejorar el rendimiento de los métodos tradicionales. Este artículo le presentará un mecanismo alternativo de atención que permitirá considerar las dependencias y relaciones relativas entre los datos de origen.
preview
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte III): Descifrando el algoritmo del Boom 1000

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte III): Descifrando el algoritmo del Boom 1000

En esta serie de artículos, analizamos cómo podemos construir Asesores Expertos capaces de adaptarse de forma autónoma a las condiciones dinámicas del mercado. En el artículo de hoy, intentaremos sintonizar una red neuronal profunda con los mercados sintéticos de Deriv.
preview
Algoritmo de optimización basado en ecosistemas artificiales —  Artificial Ecosystem-based Optimization (AEO)

Algoritmo de optimización basado en ecosistemas artificiales — Artificial Ecosystem-based Optimization (AEO)

El artículo analiza el algoritmo metaheurístico AEO que modela las interacciones entre los componentes del ecosistema mediante la creación de una población inicial de soluciones y la aplicación de estrategias de actualización adaptativas, y detalla las etapas de funcionamiento del AEO, incluidas las fases de consumo y descomposición, así como diversas estrategias de comportamiento de los agentes. El artículo presenta las peculiaridades y ventajas de este algoritmo.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte II): FTSE100 y bonos del Reino Unido (UK Gilts)

Reimaginando las estrategias clásicas en MQL5 (Parte II): FTSE100 y bonos del Reino Unido (UK Gilts)

En esta serie de artículos, exploramos estrategias de negociación populares e intentamos mejorarlas utilizando IA. En el artículo de hoy, retomamos la estrategia de negociación clásica basada en la relación entre el mercado de valores y el mercado de bonos.
preview
Redes neuronales en el trading: Segmentación guiada (Final)

Redes neuronales en el trading: Segmentación guiada (Final)

Continuamos el trabajo iniciado en el artículo anterior sobre la construcción del marco RefMask3D usando herramientas MQL5. Este marco está diseñado para explorar de forma exhaustiva la interacción multimodal y analizar las características de una nube de puntos, seguida de la identificación del objeto de destino partiendo de la descripción proporcionada en lenguaje natural.
preview
Gestión de Riesgo (Parte 5): Integrando la Gestión de Riesgo en un Asesor Experto

Gestión de Riesgo (Parte 5): Integrando la Gestión de Riesgo en un Asesor Experto

En este artículo implemento la gestión de riesgo desarrollada en publicaciones anteriores e incorporo el indicador de order blocks presentado en otros artículos. Además, realizaré un backtest para comparar los resultados con la aplicación de la gestión de riesgo y evaluaré el impacto del riesgo dinámico.
preview
Características del Wizard MQL5 que debe conocer (Parte 37): Regresión de procesos gaussianos con núcleos Matérn y lineales

Características del Wizard MQL5 que debe conocer (Parte 37): Regresión de procesos gaussianos con núcleos Matérn y lineales

Los núcleos lineales son la matriz más simple de su tipo utilizada en el aprendizaje automático para regresión lineal y máquinas de vectores de soporte. Por otro lado, el kernel Matérn es una versión más versátil de la función de base radial que analizamos en un artículo anterior, y es apto para mapear funciones que no son tan suaves como asumiría la RBF. Creamos una clase de señal personalizada que utiliza ambos núcleos para pronosticar condiciones largas y cortas.
preview
Optimización del búfalo africano - African Buffalo Optimization (ABO)

Optimización del búfalo africano - African Buffalo Optimization (ABO)

El artículo se centra en el algoritmo de optimización del búfalo africano (ABO), un enfoque metaheurístico desarrollado en 2015 y basado en el comportamiento único de estos animales. El artículo detalla los pasos de implementación del algoritmo y su eficacia a la hora de encontrar soluciones a problemas complejos, lo cual lo convierte en una valiosa herramienta en el campo de la optimización.
preview
Introducción a MQL5 (Parte 9): Comprensión y uso de objetos en MQL5

Introducción a MQL5 (Parte 9): Comprensión y uso de objetos en MQL5

Aprenda a crear y personalizar objetos gráficos en MQL5 utilizando datos actuales e históricos. Esta guía basada en proyectos le ayuda a visualizar operaciones y aplicar conceptos MQL5 de manera práctica, lo que facilita la creación de herramientas adaptadas a sus necesidades comerciales.
preview
Redes neuronales en el trading: Segmentación guiada

Redes neuronales en el trading: Segmentación guiada

Hoy proponemos al lector familiarizarse con el método de análisis multimodal complejo de interacción y comprensión de características.
preview
Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Hoy hemos intentado construir un experto comercial para predecir las cotizaciones de los tipos de cambio. El algoritmo se basa en modelos de clasificación clásicos: la regresión logística y probit. Como filtro para las señales comerciales, hemos utilizado el criterio de la razón de verosimilitud.
preview
Reimaginando las estrategias clásicas (Parte VIII): Los mercados de divisas y metales preciosos en el USDCAD

Reimaginando las estrategias clásicas (Parte VIII): Los mercados de divisas y metales preciosos en el USDCAD

En esta serie de artículos, revisamos estrategias de negociación bien conocidas para ver si podemos mejorarlas utilizando IA. En el artículo de hoy comprobaremos si existe una relación fiable entre los metales preciosos y las divisas.
preview
Elaboración de previsiones económicas: el potencial de Python

Elaboración de previsiones económicas: el potencial de Python

¿Cómo utilizar los datos económicos del Banco Mundial para crear previsiones? ¿Qué ocurre si se combinan modelos de IA y economía?
preview
Búsqueda de patrones arbitrarios de pares de divisas en Python con ayuda de MetaTrader 5

Búsqueda de patrones arbitrarios de pares de divisas en Python con ayuda de MetaTrader 5

¿Existen patrones y regularidades recurrentes en el mercado de divisas? He decidido crear mi propio sistema de análisis de patrones usando Python y MetaTrader 5. Una simbiosis de matemáticas y programación para conquistar Fórex.
preview
Características del Wizard MQL5 que debe conocer (Parte 36): Q-Learning con Cadenas de Markov

Características del Wizard MQL5 que debe conocer (Parte 36): Q-Learning con Cadenas de Markov

El aprendizaje de refuerzo es uno de los tres principios principales del aprendizaje automático, junto con el aprendizaje supervisado y el aprendizaje no supervisado. Por lo tanto, se preocupa del control óptimo o de aprender la mejor política a largo plazo que se adapte mejor a la función objetivo. Con este telón de fondo, exploramos su posible papel en la información del proceso de aprendizaje de una MLP de un Asesor Experto montado por un asistente.
preview
Sistema de arbitraje de alta frecuencia en Python con MetaTrader 5

Sistema de arbitraje de alta frecuencia en Python con MetaTrader 5

Hoy vamos a crear un sistema de arbitraje legal a los ojos de los brókeres, que creará miles de precios sintéticos en el mercado Fórex, los analizará y negociará con éxito para obtener beneficios.
preview
Algoritmo de Irrigación Artificial — Artificial Showering Algorithm (ASHA)

Algoritmo de Irrigación Artificial — Artificial Showering Algorithm (ASHA)

Este artículo presenta el Algoritmo de Irrigación Artificial (ASHA), un nuevo método metaheurístico desarrollado para resolver problemas generales de optimización. Basado en la modelización de los procesos de flujo y almacenamiento del agua, este algoritmo construye el concepto de un campo ideal en el que cada unidad de recurso (agua) es invocada para encontrar una solución óptima. Hoy descubriremos cómo el ASHA adapta los principios de flujo y acumulación para asignar eficazmente los recursos en el espacio de búsqueda, y también veremos su aplicación y los resultados de sus pruebas.
preview
Métodos de William Gann (Parte III): ¿Funciona la astrología?

Métodos de William Gann (Parte III): ¿Funciona la astrología?

¿Las posiciones de los planetas y las estrellas afectan los mercados financieros? Armémonos de estadísticas y big data y embarquémonos en un viaje apasionante hacia el mundo donde las estrellas y los gráficos bursátiles se cruzan.