数据科学和机器学习(第 05 部分):决策树
决策树模仿人类的方式针对数据进行分类。 我们看看如何构建这棵树,并利用它们来分类和预测一些数据。 决策树算法的主要目标是将含有杂质的数据分离成纯节点或靠近节点。
数据科学和机器学习(第 04 部分):预测当前股市崩盘
在本文中,我将尝试运用我们的逻辑模型,基于美国经济的基本面,来预测股市崩盘,我们将重点关注 NETFLIX 和苹果。利用 2019 年和 2020 年之前的股市崩盘,我们看看我们的模型在当前的厄运和低迷中会表现如何。
数据科学与机器学习(第 03 部分):矩阵回归
这一次,我们的模型是由矩阵构建的,它更具灵活性,同时它允许我们构建更强大的模型,不仅可以处理五个独立变量,但凡我们保持在计算机的计算极限之内,它还可以处理更多变量,这篇文章肯定会是一篇阅读起来很有趣的文章。
神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类
我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。
神经网络变得轻松(第十四部分):数据聚类
我的上一篇文章已经发表一年多了。 这令我有了大量时间考虑修改思路和发展新方法。 在这篇新文章中,我想转移一下以前使用的监督学习方法。 这次我们将深入研究无监督学习算法。 特别是,我们将考虑一种聚类算法 — k-均值。
数据科学与机器学习(第 02 部分):逻辑回归
数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。
数据科学与机器学习(第 01 部分):线性回归
我们作为交易员,现在是时候基于数字所言来培训我们的系统,并自行制定决策了。 尽管我们的眼睛看不到,但我们的勇气让我们相信,这是世界前进的方向,所以,让我们顶着波浪的方向移动。
MQL5 中的矩阵和向量
运用特殊的数据类型“矩阵”和“向量”,可以创建非常贴合数学符号本意的代码。 运用这些方法,您可以避免创建嵌套循环,或在计算中分心记忆正确的数组索引。 因此,矩阵和向量方法的运用能为开发复杂程序提高可靠性和速度。
多层感知器和反向传播算法(第二部分):利用 Python 实现并与 MQL5 集成
有一个 Python 程序包可用于开发与 MQL 的集成,它提供了大量机会,例如数据探索、创建和使用机器学习模型。 集成在 MQL5 内置的 Python,能够创建各种解决方案,从简单的线性回归、到深度学习模型。 我们来看看如何设置和准备开发环境,以及如何使用一些机器学习函数库。
网格和马丁格尔交易系统中的机器学习。 您敢为其打赌吗?
本文介绍了应用于网格和马丁格尔交易的机器学习技术。 令人惊讶的是,这种方法在全球网络中难觅踪迹。 阅读过本文之后,您将能够创建自己的交易机器人。
神经网络变得轻松(第十一部分):自 GPT 获取
也许,GPT-3 是目前已有语言类神经网络中最先进的模型之一,它的最大变体可包含 1750 亿个参数。 当然,我们不打算在家用 PC 上创建如此庞然之物。 然而,我们可以看看在我们的操作中能够采用哪种体系解决方案,以及如何从中受益。
多层感知机与反向传播算法
这两种方法的普及性日益增加,因此在 Matlab、R、Python、C++ 等领域开发了大量的库,它们接收到一个训练集作为输入,并自动为问题创建合适的网络。让我们试着理解基本的神经网络类型是如何工作的(包括单神经元感知机和多层感知机)。我们将探讨一个令人兴奋的算法,它负责网络训练 - 梯度下降和反向传播。现有的复杂模型往往基于这样简单的网络模型。
神经网络变得轻松(第十部分):多目击者关注
我们以前曾研究过神经网络中的自关注机制。 在实践中,现代神经网络体系结构会采用多个并行的自关注线程来查找序列元素之间的各种依存关系。 我们来研究这种方法的实现,并评估其对整体网络性能的影响。
神经网络在交易中的实际应用 (第二部分). 计算机视觉
利用计算机视觉可以训练神经网络对价格图表和指标的直观表示。这种方法可以对整个复杂的技术指标进行更广泛的操作,因为不需要将它们以数字形式输入神经网络。
神经网络变得轻松(第九部分):操作归档
我们已经经历了很长一段路,并且函数库中的代码越来越庞大。 这令跟踪所有连接和依赖性变得难以维护。 因此,我建议为先前创建的代码创建文档,并保持伴随每个新步骤进行更新。 正确准备的文档将有助我们看到操作的完整性。
直推和主动机器学习中的梯度提升
在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。
神经网络变得轻松(第八部分):关注机制
在之前的文章中,我们已经测试了组织规划神经网络的各种选项。 我们还研究了自图像处理算法中借鉴而来的卷积网络。 在本文中,我建议研究关注机制,它的出现为开发语言模型提供了动力。
神经网络变得轻松(第七部分):自适应优化方法
在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。
无需 Python 或 R 语言知识的 Yandex CatBoost 机器学习算法
本文通过一个具体的例子提供了机器学习过程的主要阶段的代码和描述。您不需要 Python 或 R 语言知识就能够获得模型。此外,基本的MQL5知识已经足够了- 这正是我的水平。因此,我希望这篇文章能为广大读者提供一个很好的指导,帮助那些对评估机器学习能力感兴趣的人,并在他们的课程中实现这些能力。
梯度提升(CatBoost)在交易系统开发中的应用. 初级的方法
在 Python 中训练 CatBoost 分类器,并将模型导出到mql5,以及解析模型参数和自定义策略测试程序。Python 语言和 MetaTrader 5 库用于准备数据和训练模型。
神经网络变得轻松(第六部分):神经网络学习率实验
我们之前已研究过各种类型的神经网络及其实现。 在所有情况下,训练神经网络时都使用梯度下降法,为此我们需要选择学习率。 在本文中,我打算通过示例展示正确选择学习率的重要性,及其对神经网络训练的影响。
神经网络变得轻松(第五部分):OpenCL 中的多线程计算
我们早前已经讨论过某些类型的神经网络实现。 在所研究的网络中,每个神经元都重复相同的操作。 逻辑上进一步应利用现代技术提供的多线程计算功能来加快神经网络学习过程。 本文介绍了一种可能的实现方式。
神经网络变得轻松(第四部分):循环网络
我们继续研究神经网络的世界。 在本文中,我们将研究另一种类型的神经网络,循环网络。 此类型建议与时间序列配合使用,其在 MetaTrader 5 交易平台中由价格图表呈现。
神经网络变得轻松(第二部分):网络训练和测试
在第二篇文章中,我们将继续研究神经网络,并研究在智能交易系统当中调用我们所创建 CNet 类的示例。 我们将操控两个神经网络模型,它们在训练时间和预测准确性方面都表现出相似的结果。
神经网络在交易中的实际应用。 是时候进行实践了
本文提供了在 Matlab 平台上实际运用神经网络模块的讲述和指南。 它还涵盖了运用神经网络模块创建交易系统的主要方面。 为了能够在一篇文章中厘清复杂内容,我必须对其进行修改,从而在一个程序中组合若干个神经网络模块函数。
神经网络轻松制作
人工智能往往伴随着极其复杂和难以理解的事物。 同时,人工智能在日常生活中也越来越多地被提及。 不同的媒体也经常发布有关运用神经网络成就的新闻。 本文的目在于展示任何人都可以轻松创建神经网络,并在交易中运用 AI 成就。
深度神经网络 (第七部分)。 神经网络的融合: 堆叠
我们继续构建融合。 这次,之前创建的融合袋将辅以可训练的合并器 — 深度神经网络。 一个神经网络在修剪后合并了 7 个最佳融合输出。 第二个将融合的所有 500 个输出作为输入,修剪并合并它们。 神经网络将使用 Python 的 keras/TensorFlow 软件包构建。 该软件包的功能也会简要介绍。 还会进行测试并比较装型融合和堆叠融合的分类品质。
深度神经网络 (第六部分)。 神经网络分类器的融合: 引导聚合
本文讨论了用引导聚合结构构建并训练神经网络融合的方法。 它还确定了构成融合的各独立神经网络分类器的超参数优化的特性。 本文中所创建的神经网络融合的品质将与该系列前一篇文章中获得的优化神经网络的品质进行比较。 已考虑到进一步提高融合分类品质的可能性。
深度神经网络 (第五部分)。 DNN 超参数的贝叶斯优化
本文研究利用贝叶斯优化深度神经网络 (DNN) 超参数,获取各种训练变体的可能性。 比较不同训练变体中最优超参数 DNN 的分类品质。 DNN 最优超参数的有效性的深度已在前瞻性测试中得以验证。 改善分类品质的可能方向也已确定。