MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
从新手到专家:使用 MQL5 制作动画新闻标题(二)

从新手到专家:使用 MQL5 制作动画新闻标题(二)

今天,我们又向前迈进了一步,整合了一个外部新闻 API 作为我们的 News Headline EA 的头条新闻来源。在这个阶段,我们将探索各种新闻来源 —— 包括成熟的和新兴的 —— 并学习如何有效地访问它们的 API。我们还将介绍如何将检索到的数据解析成适合在我们的 EA 交易中显示的格式。加入讨论,我们将探索直接在图表上访问新闻标题和经济日历的好处,所有这些都在一个紧凑、不干扰用户的界面中。
preview
开发多币种 EA 交易(第 23 部分):整理自动项目优化阶段的输送机(二)

开发多币种 EA 交易(第 23 部分):整理自动项目优化阶段的输送机(二)

我们的目标是创建一个系统,用于自动定期优化最终 EA 中使用的交易策略。随着系统的发展,它变得越来越复杂,因此有必要不时地将其视为一个整体,以确定瓶颈和次优解决方案。
preview
MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈

MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈

本文通过引入拖拽面板功能和悬停交互效果,对交易助手工具进行全面升级,使界面操作更直观且响应更迅速。我们优化了工具的实时订单验证机制,确保交易参数能根据市场价格动态校准。同时,我们通过回测验证了这些改进的可靠性。
preview
交易中的神经网络:层次化双塔变换器(终篇)

交易中的神经网络:层次化双塔变换器(终篇)

我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
preview
精通日志记录(第六部分):数据库日志存储方案

精通日志记录(第六部分):数据库日志存储方案

本文探讨如何利用数据库以结构化、可扩展的方式存储日志。内容涵盖基础概念、核心操作、MQL5中数据库处理器的配置与实现。最后验证结果,并阐述该方法在优化与高效监控方面的优势。
preview
交易中的神经网络:配备概念强化的多智代系统(FinCon)

交易中的神经网络:配备概念强化的多智代系统(FinCon)

我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
preview
在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面

在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面

本文探讨了动态 MQL5 图形界面,利用双三次插值技术在交易图表上实现高质量的图像缩放。我们详细介绍了灵活的定位选项,支持通过自定义偏移量实现动态居中或位置定位。
preview
MQL5开发专属调试与性能分析工具(第一部分):高级日志记录

MQL5开发专属调试与性能分析工具(第一部分):高级日志记录

学习如何为MQL5实现一个强大的自定义日志框架,该框架超越简单的Print()语句,支持日志严重级别、多输出处理器和自动文件轮转——所有功能均可动态配置。将单例CLogger与ConsoleLogHandler(控制台日志处理器)和FileLogHandler(文件日志处理器)集成,在“Experts”选项卡和持续的文件中捕获带时间戳的内容日志。通过清晰、可定制的日志格式和集中控制,简化智能交易系统(EA)的调试与性能跟踪工作。
preview
用Python构建一个远程外汇风险管理系统

用Python构建一个远程外汇风险管理系统

我们将用Python构建一个远程外汇风险管理系统,并逐步将其部署到服务器上。在本文中,我们将学习如何通过编程管理外汇风险,以及如何避免外汇账户资金再次损失殆尽。
preview
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
preview
纯 MQL5 货币对强弱指标

纯 MQL5 货币对强弱指标

我们将在 MQL5 中开发货币强势分析的专业指标。这本分步指南将向你展示如何为 MetaTrader 5 开发一款功能强大的交易工具,该工具带有可视化仪表板。您将学习如何计算多个时间周期(H1、H4、D1)内货币对的强度,实现动态数据更新,并创建用户友好的界面。
preview
皇冠同花顺优化(RFO)

皇冠同花顺优化(RFO)

最初的皇冠同花顺优化算法提供了一种解决优化问题的新方法,受到扑克牌原则启发,以基于扇区的方式取代了传统的遗传二进制编码算法。RFO 展现出简化的基本原理如何带来高效、且实用的优化方法。文章呈现了一份详细的算法分析和测试结果。
preview
开发多币种 EA 交易(第 22 部分):开始向设置的热插拔过渡

开发多币种 EA 交易(第 22 部分):开始向设置的热插拔过渡

如果要自动进行周期性优化,我们需要考虑自动更新交易账户上已经运行的 EA 设置。这样一来,我们就可以在策略测试器中运行 EA,并在单次运行中更改其设置。
preview
您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC

您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC

强化学习中的回放缓冲区对于像 DQN 或 SAC 这样的无政策算法尤为重要。这样就会聚光在该记忆缓冲区的抽样过程。举例,SAC 默认选项从该缓冲区随机选择,而优先经验回放缓冲区则基于 TD 分数从缓冲区中抽样对其优调。我们回顾强化学习的重要性,并一如既往,在由向导汇编的智能系统中验证这一假设(而‘非交叉验证)。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
preview
您应当知道的 MQL5 向导技术(第 56 部分):比尔·威廉姆斯(Bill Williams)分形

您应当知道的 MQL5 向导技术(第 56 部分):比尔·威廉姆斯(Bill Williams)分形

比尔·威廉姆斯(Bill Williams)的分形是一个强有力的指标,在价格图标上初现时很容易被忽视。它出现得过于繁忙,大概也不够精锐。我们的靶标是配以由向导汇编的智能系统针对所有指标进行前向漫游测试,检验其在各种形态下能够取得怎样的成果,从而揭开该指标的面纱。
preview
MQL5 简介(第 14 部分):构建自定义指标的初学者指南(三)

MQL5 简介(第 14 部分):构建自定义指标的初学者指南(三)

学习如何使用图表对象在 MQL5 中构建谐波形态指标。了解如何检测波动点、应用斐波那契回撤线以及自动识别形态。
preview
交易中的神经网络:层次化双塔变换器(Hidformer)

交易中的神经网络:层次化双塔变换器(Hidformer)

我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
preview
使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备

使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备

在本文中,我们通过将经济日历数据作为非实盘分析资源嵌入到MQL5交易系统中,为策略测试做好准备。我们实现了按时间、货币和影响程度加载和筛选事件的功能,并在策略测试器中验证其有效性。这使得基于新闻事件的策略能够进行高效的回测。
preview
从新手到专家:使用 MQL5 制作动画新闻标题(一)

从新手到专家:使用 MQL5 制作动画新闻标题(一)

在 MetaTrader 5 终端上进行交易时,新闻可访问性是一个关键因素。虽然有很多新闻 API 可用,但许多交易者在访问这些 API 并将其有效集成到他们的交易环境中时仍面临挑战。在本次讨论中,我们的目标是开发一种简化的解决方案,将新闻直接呈现在图表上 —— 也就是最需要新闻的地方。我们将通过构建一个新闻标题 EA 来实现这一目标,该 EA 可以监控并显示来自 API 源的实时新闻更新。
preview
MQL5 MVC模式中表格的视图组件:基础图形元素

MQL5 MVC模式中表格的视图组件:基础图形元素

本文介绍了在MQL5中实现MVC(模型-视图-控制器)范式下表格视图组件时,开发基础图形元素的过程。这是关于视图组件的首篇文章,也是为MetaTrader 5客户端开发表格功能系列文章的第三篇。
preview
交易中的神经网络:配备概念强化的多智代系统(终篇)

交易中的神经网络:配备概念强化的多智代系统(终篇)

我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
preview
基于MQL5中表模型的表类和表头类:应用MVC概念

基于MQL5中表模型的表类和表头类:应用MVC概念

本文是致力于使用MVC(模型-视图-控制器)架构范式在MQL5中实现表模型系列文章的第二部分。本文基于先前创建的表模型来开发表类和表头。已经开发的类将构成进一步实现视图和控制器组件的基础,这些内容将在随后的文章中讨论。
preview
MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)

MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)

本文将指导您从头开始构建自定义 Heikin Ashi 指标,并演示如何将自定义指标集成到 EA 中。它涵盖了指标计算、交易执行逻辑和风险管理技术,以增强自动化交易策略。
preview
交易中的资本管理和带有数据库的交易者家庭会计程序

交易中的资本管理和带有数据库的交易者家庭会计程序

交易者如何管理资金?交易者和投资者如何跟踪支出、收入、资产和负债?我不仅要向你介绍会计软件;我将向您展示一个工具,它可能会成为您在波涛汹涌的交易海洋中可靠的金融导航器。
preview
成功餐饮经营者算法(SRA)

成功餐饮经营者算法(SRA)

成功餐饮经营者算法(SRA)是一种受餐饮业管理原则启发的创新优化方法。与传统方法不同,SRA不会直接淘汰劣质解,而是通过融合优质解的元素对其进行改进。该算法在优化问题中展现出极具竞争力的表现,并为平衡探索与利用提供了全新视角。
preview
MQL5中表格模型的实现:应用MVC概念

MQL5中表格模型的实现:应用MVC概念

在本文中,我们将探讨如何使用MVC(模型-视图-控制器)架构模式在MQL5中开发表格模型,该模式可将数据逻辑、展示和控制进行分离,从而实现结构化、灵活且可扩展的代码。我们将考虑实现用于构建表格模型的各类,包括使用链表来存储数据。
preview
台球优化算法(BOA)

台球优化算法(BOA)

BOA方法灵感源自经典的台球运动,它将寻求最优解的过程模拟为一场游戏:球体致力于落入代表最佳结果的球袋之中。本文将探讨BOA的基本原理、数学模型及其在解决各类优化问题中的效率。
preview
数据科学和机器学习(第 34 部分):时间序列分解,剖析股票市场的核心

数据科学和机器学习(第 34 部分):时间序列分解,剖析股票市场的核心

在一个充斥着杂乱且不可预测数据的世界里,识别有意义的形态可能颇具挑战性。在本文中,我们将探讨季节性分解,这是一种强力分析技术,有助于把数据拆分为关键成分:趋势、季节性形态、和噪声。以该途径拆解数据,我们能够揭示隐藏的洞见,并配以更清晰、更易解读的信息工作。
preview
从新手到专家:使用 MQL5 制作动画新闻标题 (三) — 指标洞察

从新手到专家:使用 MQL5 制作动画新闻标题 (三) — 指标洞察

在本文中,我们将通过引入专门的指标洞察通道来推进新闻标题EA —— 一个紧凑的图表显示,显示由RSI、MACD、随机震荡指标和 CCI 等流行指标生成的关键技术信号。这种方法消除了 MetaTrader 5 终端上多个指标子窗口的需要,使您的工作空间保持干净高效。通过利用 MQL5 API 在后台访问指标数据,我们可以使用自定义逻辑实时处理和可视化市场洞察。加入我们,探索如何在 MQL5 中操纵指标数据,以创建一个智能且节省空间的滚动洞察系统,所有这些都在您的交易图表上的一个水平通道内。