MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
preview
开发回放系统(第 38 部分):铺路(II)

开发回放系统(第 38 部分):铺路(II)

许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。
preview
DoEasy.服务函数(第 3 部分):外包线形态

DoEasy.服务函数(第 3 部分):外包线形态

在本文中,我们将开发 DoEasy 库中的外包线(Outside Bar)价格行为形态,并优化访问价格形态管理的方法。此外,我们将修复在库测试中发现的错误和缺点。
preview
随机优化和最优控制示例

随机优化和最优控制示例

这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。
preview
头脑风暴优化算法(第二部分): 多模态

头脑风暴优化算法(第二部分): 多模态

在文章的第二部分,我们将继续讨论BSO算法的实际应用,对测试函数进行测试,并将BSO的效率与其他优化方法进行比较。
preview
构建K线图趋势约束模型(第5部分):通知系统(第二部分)

构建K线图趋势约束模型(第5部分):通知系统(第二部分)

今天,我们将讨论如何使用MQL5与Python和Telegram Bot API相结合,为MetaTrader 5的指标通知集成一个实用的Telegram应用。我们将详细解释所有内容,确保每个人都不会错过任何要点。完成这个项目后,您将获得宝贵的见解,可以在自己的项目中加以应用。
preview
基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线

基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线

移动平均线无疑是我们的 AI 模型进行预测的最佳指标。然而,我们可以通过严谨数据变换来进一步提高其准确性。本文将展示如何构建能够预测更远范围的AI模型,超越您目前所实现的水平,同时不会显著降低准确率。移动平均线的实用性确实令人惊叹。
preview
开发回放系统(第 43 部分):Chart Trade 项目(II)

开发回放系统(第 43 部分):Chart Trade 项目(II)

大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。
preview
神经网络变得简单(第 72 部分):噪声环境下预测轨迹

神经网络变得简单(第 72 部分):噪声环境下预测轨迹

预测未来状态的品质在“目标条件预测编码”方法中扮演着重要角色,我们曾在上一篇文章中讨论过。在本文中,我想向您介绍一种算法,它可以显著提高随机环境(例如金融市场)中的预测品质。
preview
构建蜡烛图趋势约束模型(第8部分):EA开发(II)

构建蜡烛图趋势约束模型(第8部分):EA开发(II)

构思一个独立的EA。之前,我们讨论了一个基于指标的EA,它还与一个独立脚本配合,用于绘制风险与收益图形。今天,我们将讨论一个整合了所有功能的MQL5 EA的架构。
preview
风险管理(第二部分):在图形界面中实现手数计算

风险管理(第二部分):在图形界面中实现手数计算

在本文中,我们将探讨如何使用强大的 MQL5 图形控件库来改进和更有效地应用上一篇文章中提出的概念。我们将逐步完成创建一个功能齐全的图形用户界面。我将解释它背后的想法,以及所使用的每种方法的目的和操作。此外,在本文的最后,我们将测试我们创建的面板,以确保它正确运行并实现其既定目标。
preview
在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)

在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)

本文探讨了如何优化 RSI 的水平和周期,以获得更好的交易信号。我们介绍了估算最优 RSI 值的方法,并使用网格搜索和统计模型来自动选择周期。最后,我们在 MQL5 中实现了该解决方案,同时利用 Python 进行分析。我们的方法力求务实和直接,旨在以简单的方式帮助您解决潜在复杂的问题。
preview
开发回放系统(第 57 部分):了解测试服务

开发回放系统(第 57 部分):了解测试服务

需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
preview
神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

神经网络变得简单(第 65 部分):距离加权监督学习(DWSL)

在本文中,我们将领略一个有趣的算法,它是在监督和强化学习方法的交叉点上构建的。
preview
卡尔曼滤波器在外汇均值回归策略中的应用

卡尔曼滤波器在外汇均值回归策略中的应用

卡尔曼滤波器是一种递归算法,在算法交易中用于通过滤除价格走势中的噪声来估计金融时间序列的真实状态。它能够根据新的市场数据动态更新预测,这使得它在均值回归等自适应策略中极具价值。本文首先介绍卡尔曼滤波器,涵盖其计算方法和实现方式。接下来,我们以外汇领域一个经典的均值回归策略为例,应用该滤波器。最后,我们通过将卡尔曼滤波器与移动平均线(MA)在外汇不同货币对上进行比较,开展各种统计分析。
preview
分歧问题:深入探讨人工智能的复杂性可解释性

分歧问题:深入探讨人工智能的复杂性可解释性

在这篇文章中,我们将探讨理解人工智能如何工作的挑战。人工智能模型经常会以难以解释的方式做出决策,这就是所谓的 "分歧问题"。这个问题是提高人工智能透明度和可信度的关键。
preview
探索 MQL5 中的密码学:深入浅出的方法阐述

探索 MQL5 中的密码学:深入浅出的方法阐述

本文探讨了在 MQL5 中整合密码学技术,以增强交易算法的安全性和功能性。文章将涵盖关键的密码学方法及其在自动化交易中的实际应用。
preview
开发回放系统(第 72 部分):异常通信(一)

开发回放系统(第 72 部分):异常通信(一)

我们今天创造的东西将很难理解。因此,在这篇文章中,我将只谈论初始阶段。请仔细阅读这篇文章,这是我们继续下一步的重要前提。本材料的目的纯粹是教学性的,因为我们只会学习和掌握所提出的概念,而没有实际应用。
preview
ALGLIB 库优化方法(第二部分)

ALGLIB 库优化方法(第二部分)

在本文中,我们将继续研究ALGLIB库中剩余的优化方法,并特别关注它们在复杂多维函数上的测试表现。这样我们不仅能够评估每种算法的效率,还能在不同条件下比较出它们的优势与不足。
preview
开发回放系统(第 69 部分):取得正确的时间(二)

开发回放系统(第 69 部分):取得正确的时间(二)

今天我们将看看为什么我们需要 iSpread 功能。同时,我们将了解当没有可用的分时报价时,系统如何通知我们柱形的剩余时间。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
种群优化算法:鲸鱼优化算法(WOA)

种群优化算法:鲸鱼优化算法(WOA)

鲸鱼优化算法(WOA)是一种受座头鲸行为和捕食策略启发的元启发式算法。该算法的核心思想在于模仿所谓的“气泡网”捕食方法,即鲸鱼在猎物周围制造气泡,然后以螺旋运动的方式攻击猎物。
preview
HTTP和Connexus(第2部分):理解HTTP架构和库设计

HTTP和Connexus(第2部分):理解HTTP架构和库设计

本文探讨了HTTP协议的基础知识,涵盖了主要方法(GET、POST、PUT、DELETE)、状态码以及URL的结构。此外,还介绍了Conexus库的构建起点,以及CQueryParam和CURL类,这些类用于在HTTP请求中操作URL和查询参数。
preview
基于人工生态系统的优化(AEO)算法

基于人工生态系统的优化(AEO)算法

本文探讨了一种元启发式算法——基于人工生态系统的优化(Artificial Ecosystem-based Optimization, AEO)算法。该算法通过生成初始解种群并应用自适应更新策略,模拟生态系统各组成部分之间的相互作用。文中详细阐述了AEO算法的运行阶段,包括消耗阶段与分解阶段,以及不同智能体的行为策略。文章还介绍了该算法的特点和优势。
preview
从零开始在MQL5中实现移动平均线:简单明了

从零开始在MQL5中实现移动平均线:简单明了

我们将通过简单的示例,探究移动平均线的计算原理,同时了解优化指标计算(包括移动平均线计算)的方法。
preview
神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

神经网络变得简单(第 80 部分):图形变换器生成式对抗模型(GTGAN)

在本文中,我将领略 GTGAN 算法,该算法于 2024 年 1 月推出,是为解决依据图形约束生成架构布局的复杂问题。
preview
开发回放系统(第 68 部分):取得正确的时间(一)

开发回放系统(第 68 部分):取得正确的时间(一)

今天,我们将继续努力,让鼠标指针告诉我们在流动性较低期间,一根柱形上还剩下多少时间。尽管乍一看似乎很简单,但实际上这项任务要困难得多。这涉及一些我们必须克服的障碍。因此,为了理解以下部分,您必须很好地理解子系列第一部分的材料。
preview
自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法

自适应社会行为优化(ASBO):Schwefel函数与Box-Muller方法

本文深入探讨了生物体的社会行为及其对新型数学模型——自适应社会行为优化(ASBO)创建的影响,为我们呈现了一个引人入胜的世界。我们将研究生物社会中观察到的领导、近邻和合作原则如何激发创新优化算法的开发。
preview
神经网络实践:直线函数

神经网络实践:直线函数

在本文中,我们将快速了解一些方法,以获得可以在数据库中表示数据的函数。我不会详细介绍如何使用统计和概率研究来解释结果。让我们把它留给那些真正想深入研究数学方面的人。探索这些问题对于理解研究神经网络所涉及的内容至关重要。在这里,我们将非常冷静地探讨这个问题。
preview
迁移至 MQL5 Algo Forge(第 4 部分):使用版本和发布

迁移至 MQL5 Algo Forge(第 4 部分):使用版本和发布

我们将继续开发 Simple Candles 和 Adwizard 项目,同时还将描述使用 MQL5 Algo Forge 版本控制系统和仓库的细节。
preview
开发回放系统(第 61 部分):玩转服务(二)

开发回放系统(第 61 部分):玩转服务(二)

在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。
preview
在MQL5中创建交易管理员面板(第三部分):通过视觉样式设计增强图形用户界面(1)

在MQL5中创建交易管理员面板(第三部分):通过视觉样式设计增强图形用户界面(1)

在本文中,我们将专注于使用MQL5为交易管理员面板的图形用户界面(GUI)进行视觉样式设计与优化。我们将探讨MQL5中可用的各种技术和功能,这些技术和功能允许对界面进行定制和优化,确保它既能满足交易者的需求,又能保持吸引人的外观。
preview
从头开始以 MQL5 实现 SHA-256 加密算法

从头开始以 MQL5 实现 SHA-256 加密算法

长期以来,构建无 DLL 的加密货币兑换集成一直是一个挑战,但该解决方案为直接市场对接提供了一个完整的框架。
preview
构建MQL5自优化智能交易系统(第二部分):美元兑日元(USDJPY)剥头皮策略

构建MQL5自优化智能交易系统(第二部分):美元兑日元(USDJPY)剥头皮策略

今天我们齐聚一堂,挑战为美元兑日元(USDJPY)货币对打造一套全新交易策略。我们将基于日线图上的K线形态开发交易策略,因为日线级别的信号通常蕴含更强的市场动能。初始策略已实现盈利,这激励我们进一步优化策略,并增加风险控制层以保护已获利资本。
preview
开发多币种 EA 交易(第 21 部分):准备重要实验并优化代码

开发多币种 EA 交易(第 21 部分):准备重要实验并优化代码

为了取得进一步的进展,最好看看我们是否可以通过定期重新运行自动优化并生成新的 EA 来改进结果。关于使用参数优化的许多争论中的绊脚石是,在将盈利能力和回撤保持在指定水平的同时,所获得的参数在未来一段时间内可用于交易的时间有多长。有可能做到这一点吗?
preview
在MQL5中创建交易管理员面板(第二部分):增强响应性和快速消息传递

在MQL5中创建交易管理员面板(第二部分):增强响应性和快速消息传递

在本文中,我们将增强之前创建过的管理面板的响应性。此外,我们还将探讨在交易信号背景下快速消息传递的重要性。
preview
算法交易中的神经符号化系统:结合符号化规则和神经网络

算法交易中的神经符号化系统:结合符号化规则和神经网络

本文讲述开发混合交易系统的经验,即结合经典技术分析与神经网络。作者从基本形态分析、神经网络结构、到交易决策背后的机制,提供了系统架构的详细分析,并分享了真实代码和实践观察。
preview
特征向量和特征值:MetaTrader 5 中的探索性数据分析

特征向量和特征值:MetaTrader 5 中的探索性数据分析

在这篇文章中,我们将探索特征向量和特征值在探索性数据分析中的不同应用方式,以揭示数据中的独特关系。
preview
开发回放系统(第 48 部分):了解服务的概念

开发回放系统(第 48 部分):了解服务的概念

学习些新知识怎么样?在本文中,您将了解如何将脚本转换为服务,以及为什么这样做很有用。
preview
细菌趋化优化(BCO)

细菌趋化优化(BCO)

本文介绍了细菌趋化优化(Bacterial Chemotaxis Optimization,简称 BCO)算法的原始版本及其改进版本。我们将详细探讨所有不同之处,特别关注 BCOm 的新版本,该版本简化了细菌的移动机制,减少了对位置历史的依赖,并且使用了比原始版本计算量更小的数学方法。我们还将进行测试并总结结果。
preview
事后交易分析:在策略测试器中选择尾随停止和新的止损位

事后交易分析:在策略测试器中选择尾随停止和新的止损位

我们继续在策略测试器中分析已完结成交的主题,以便提升交易品质。我们看看使用不同的尾随停止如何改变我们现有的交易结果。