MQL5编程文章

icon

在众多发表的文章中研究 MQL5语言编程交易策略 的多数由您—我们 MQL5.community的会员所作。文章以类别分组来帮助您迅速找到任何有关MQL5编程问题的答案:集成,测试,交易策略等等。

Follow our 新发表讨论它们在 MQL5.community论坛

添加一个新的文章
最近 | 最佳
preview
从基础到中级:SWITCH 语句

从基础到中级:SWITCH 语句

在本文中,我们将学习如何以最简单、最基本的形式使用 SWITCH 语句。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
在任何市场中获得优势(第三部分):Visa消费指数

在任何市场中获得优势(第三部分):Visa消费指数

在大数据的世界里,有数以百万计的备选数据集,它们有可能提升我们的交易策略。在这一系列文章中,我们将帮助您识别最有信息量的公开数据集。
preview
交易中的神经网络:层次化向量变换器(终章)

交易中的神经网络:层次化向量变换器(终章)

我们继续研究层次化向量变换器方法。在本文中,我们将完成模型的构造。我们还会在真实历史数据上对其进行训练和测试。
preview
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。
preview
交易中的神经网络:探索局部数据结构

交易中的神经网络:探索局部数据结构

在嘈杂的条件下有效识别和预存市场数据的局部结构是交易中的一项关键任务。运用自注意力机制在处理这类数据方面展现出可喜的结果;不过,经典方式并未考虑底层结构的局部特征。在本文中,我将引入一种能够协同这些结构依赖关系的算法。
preview
让新闻交易轻松上手(第4部分):性能增强

让新闻交易轻松上手(第4部分):性能增强

本文将深入探讨改进EA在策略测试器中运行时间的方法,通过编写代码将新闻事件时间按小时分类。在指定的小时段内将访问这些新闻事件。这样确保了EA能够在高波动性和低波动性环境中高效管理事件驱动的交易。
preview
数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)

数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)

在本文中,我们会探讨卷积神经网络(CNN)和递归神经网络(RNN)在股票市场预测中的动态集成。借力 CNN 提取形态的能力,以及 RNN 的精练度,来处理序列数据。我们看看这个强大的组合如何强化交易算法的准确性和效率。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。
preview
构建K线图趋势约束模型(第九部分):多策略EA(第一部分)

构建K线图趋势约束模型(第九部分):多策略EA(第一部分)

今天,我们将探讨如何使用MQL5将多种策略集成到一个EA中。EA不仅仅提供指标和脚本,还允许采用更复杂的交易方法,这些方法能够适应不断变化的市场条件。请阅读本文,带您了解更多。
preview
交易中的神经网络:超点变换器(SPFormer)

交易中的神经网络:超点变换器(SPFormer)

在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
preview
开发回放系统(第 66 部分):玩转服务(七)

开发回放系统(第 66 部分):玩转服务(七)

在本文中,我们将实现第一个解决方案,该解决方案使我们能够确定何时在图表上出现新的柱形。此解决方案适用于各种情况。了解它的发展将有助于你掌握几个重要方面。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归

线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。
preview
从基础到中级:IF ELSE

从基础到中级:IF ELSE

在本文中,我们将讨论如何使用 IF 操作符及其伴随者 ELSE。这个语句是所有编程语言中最为重要且最有意义的语句。然而,尽管它易于使用,但如果我们没有使用它的经验以及与之相关的概念,它有时会令人困惑。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
preview
基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法

基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法

传统的机器学习教导从业者要警惕不要使模型陷入过度拟合。然而,这种观念正受到哈佛大学研究人员最新发表的学术见解的挑战。他们发现,看似过拟合的情形在某些情况下可能是由于提前终止训练过程导致的。我们将展示如何利用研究论文中发表的观点,来改进我们使用人工智能预测市场行为的方式。
preview
Connexus助手(第五部分):HTTP方法和状态码

Connexus助手(第五部分):HTTP方法和状态码

在本文中,我们将了解HTTP方法和状态码,这是网络上客户端与服务器之间通信的两个非常重要的部分。了解每种方法的作用,可以让您更精确地发出请求,告知服务器您想要执行的操作,从而提高效率。
preview
开发回放系统(第 60 部分):玩转服务(一)

开发回放系统(第 60 部分):玩转服务(一)

很长一段时间以来,我们一直在研究指标,但现在是时候让服务重新工作了,看看图表是如何根据提供的数据构建的。然而,由于整个事情并没有那么简单,我们必须注意了解前方等待我们的是什么。
preview
基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线

基于Python和MQL5的特征工程(第一部分):为长期 AI 模型预测移动平均线

移动平均线无疑是我们的 AI 模型进行预测的最佳指标。然而,我们可以通过严谨数据变换来进一步提高其准确性。本文将展示如何构建能够预测更远范围的AI模型,超越您目前所实现的水平,同时不会显著降低准确率。移动平均线的实用性确实令人惊叹。
preview
在Python和MQL5中应用局部特征选择

在Python和MQL5中应用局部特征选择

本文探讨了Narges Armanfard等人在论文《数据分类的局部特征选择》中介绍的一种特征选择算法。该算法使用Python实现,用于构建二元分类器模型,这些模型可以与MetaTrader 5应用程序集成以进行推理。
preview
您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

您应当知道的 MQL5 向导技术(第 33 部分):高斯(Gaussian)进程核心

高斯(Gaussian)进程核心是正态分布的协方差函数,能够在预测中扮演角色。我们在 MQL5 的自定义信号类中探索这种独特的算法,看看它是否可当作主要入场和离场信号。
preview
ALGLIB库优化方法(第一部分)

ALGLIB库优化方法(第一部分)

在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。
preview
神经网络实践:绘制神经元

神经网络实践:绘制神经元

在本文中,我们将构建一个基本神经元。虽然它看起来很简单,许多人可能会认为这段代码完全微不足道,毫无意义,但我希望你在学习这个简单的神经元草图时能玩得开心。不要害怕修改代码,完全理解它才是目标。
preview
因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例

因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例

我们将向之前发布的文章中的三个例子里加入深度学习,并与之前的版本进行比较。目标是学习如何将深度学习(DL)应用于其他EA。
preview
交易中的神经网络:免掩码注意力方式预测价格走势

交易中的神经网络:免掩码注意力方式预测价格走势

在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。
preview
从基础到中级:FOR 语句

从基础到中级:FOR 语句

在本文中,我们将了解 FOR 语句最基本的概念。了解这里将显示的所有内容非常重要。与我们迄今为止讨论的其他语句不同,FOR 语句有一些怪癖,很快就会变得非常复杂。所以不要让这样的事情堆积起来,尽快开始学习和练习。
preview
让新闻交易轻松上手(第五部分):执行交易(2)

让新闻交易轻松上手(第五部分):执行交易(2)

本文将扩展交易管理类,以包含用于交易新闻事件的买入止损(buy-stop)和卖出止损(sell-stop)订单,并为这些订单添加过期时间限制,以防止隔夜交易。在EA中嵌入一个滑点函数,以尝试防止或最小化在交易中使用止损订单时可能发生的滑点,特别是在新闻事件期间。
preview
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
preview
Connexus请求解析(第六部分):创建HTTP请求与响应

Connexus请求解析(第六部分):创建HTTP请求与响应

在Connexus库系列文章的第六篇中,我们将聚焦于完整的HTTP请求,涵盖构成请求的各个组件。我们将创建一个表示整个请求的类,这将有助于将之前创建的各个类整合在一起。
preview
开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

开发多币种 EA 交易(第 18 部分):考虑远期的自动化组选择

让我们继续将之前手动执行的步骤自动化。这一次,我们将回到第二阶段的自动化,即选择交易策略的最佳单实例组,并补充考虑远期实例结果的能力。
preview
交易中的神经网络:广义 3D 引用表达分段

交易中的神经网络:广义 3D 引用表达分段

在分析市场状况时,我们将其切分为不同的段落,标识关键趋势。然而,传统的分析方法往往只关注一个层面,从而限制了正确的感知。在本文中,我们将学习一种方法,可选择多个对象,以确保对形势进行更全面、及多层次的理解。
preview
使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

本文概述了一种使用每日范围对市场数据进行归一化并训练神经网络以增强市场预测的简单策略。开发的模型可以与现有的技术分析框架结合使用,也可以单独使用,以帮助预测整体市场方向。任何技术分析师都可以进一步完善本文中概述的框架,以开发适用于手动和自动交易策略的模型。