使用MQL5和Python构建自优化EA(第三部分):破解Boom 1000算法
在本系列文章中,我们探讨了如何构建能够自主适应动态市场条件的EA。今天的文章中,我们将尝试调整一个深度神经网络以适应Deriv的合成市场。
开发回放系统 — 市场模拟(第 22 部分):外汇(III)
虽然这是关于这个主题的第三篇文章,但我必须为那些还不了解股票市场和外汇市场之间区别的人解释一下:最大的区别在于,在外汇中没有、或者更确切地说,我们得不到交易过程中有关一些实际发生关键处的信息。
MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)
在本文中,我们对多功能管理面板的“交易面板”进行升级。我们引入一个强大的辅助函数,大幅简化代码,提高可读性、可维护性与运行效率。同时演示如何无缝集成更多按钮,并优化界面,以支持更广泛的交易任务。无论是持仓管理、订单调整,还是简化交互,本文将助您打造稳健且易用的交易管理面板。
您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习
蒙特卡洛是我们正在研究的第四种不同的强化学习算法,目的是探索它在向导汇编智能交易系统中的实现。尽管它锚定在随机抽样,但它提供了我们可以利用的多种模拟方法。
群体优化算法:带电系统搜索(CSS)算法
在本文中,我们将探讨另一种受无生命自然启发的优化算法--带电系统搜索(Charged System Search,CSS)算法。本文旨在介绍一种基于物理和力学原理的新的优化算法。
开发多币种 EA 交易系统(第 16 部分):不同报价历史对测试结果的影响
正在开发中的 EA 预计在与不同经纪商进行交易时都会表现出良好的效果。但目前我们一直使用 MetaQuotes 模拟账户的报价进行测试。让我们看看我们的 EA 是否准备好使用与测试和优化期间使用的报价不同的交易账户。
开发回放系统 — 市场模拟(第 18 部分):跳价和更多跳价(II)
显然,目前的衡量度与创建 1-分钟柱线的理想时间相距甚远。这是我们要率先解决的一件事。解决同步问题并不困难。也许这看起来很难,但实际上却很简单。在上一篇文章中,我们没有进行所需的调整,因为它的目的是解释如何把图表上创建 1-分钟柱线的跳价数据转移至市场观察窗口。
使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器
本文介绍了一种用于训练前馈神经网络的莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法的实现。与Python的scikit-learn库中的算法进行性能比较分析。初步探讨更简便的学习方法,如梯度下降、带动量的梯度下降和随机梯度下降。
矩阵分解基础知识
由于这里的目标是教学,我们将尽可能简单地进行。也就是说,我们将只实现所需的功能:矩阵乘法。今天您将看到,这足以模拟矩阵标量乘法。许多人在使用矩阵分解实现代码时遇到的最大困难是:与标量分解不同,在标量分解中,几乎所有情况下因子的顺序都不会改变结果,但使用矩阵时情况并非如此。
在MQL5中创建交易管理员面板(第六部分):多功能界面(一)
交易管理员的角色不仅限于Telegram通信,他们还可以参与各种控制活动,包括订单管理、持仓跟踪和界面定制。在本文中,我们将分享有关扩展程序以支持MQL5中多种功能的实用见解。此次更新旨在克服当前管理员面板主要聚焦于通信这一局限,使其能够处理更广泛的任务。
开发多币种 EA 交易(第 6 部分):自动选择实例组
在优化交易策略后,我们会收到一组参数。我们可以使用它们在一个 EA 中创建多个交易策略实例。以前,我们都是手动操作。在此,我们将尝试自动完成这一过程。
种群优化算法:社群进化(ESG)
我们将研究构造多种群算法的原理。作为该算法类别的一个示例,我们将查看新的自定义算法 — 社群进化(ESG)。我们将分析该算法的基本概念、种群互动机制和优势,并检查其在优化问题中的表现。
神经网络变得轻松(第五十三部分):奖励分解
我们已经不止一次地讨论过正确选择奖励函数的重要性,我们通过为单独动作添加奖励或惩罚来刺激代理者的预期行为。但是关于由代理者解密我们的信号的问题仍旧悬而未决。在本文中,我们将探讨将单独信号传输至已训练代理者时的奖励分解。
人工电场算法(AEFA)
本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。
MQL5中的范畴论(第23部分):对双重指数移动平均的不同看法
在这篇文章中,我们继续我们的主题,最后是从“新”的角度处理日常交易指标。我们正在为这篇文章处理自然变换的水平组合,而这方面的最佳指标是双重指数移动平均(DEMA),它扩展了我们刚刚涵盖的内容。
DoEasy 函数库中的图形(第九十七部分):独立处理窗体对象移动
在本文中,我将研究实现鼠标独立拖动任何窗体对象。 此外,我还将在该函数库里补充错误消息和之前在终端和 MQL5 中实现的新成交属性。
开发多币种 EA 交易(第 4 部分):虚拟挂单和保存状态
在开始开发多币种 EA 后,我们已经取得了一些成果,并成功地进行了多次代码改进迭代。但是,我们的 EA 无法处理挂单,也无法在终端重启后恢复运行。让我们添加这些功能。
群体优化算法:思维进化计算(MEC)算法
本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。
MQL5 Algo Forge 入门
我们正在推出 MQL5 Algo Forge —— 一个专为算法交易开发人员设计的门户网站。它将 Git 的强大功能与直观的界面相结合,用于管理和组织 MQL5 生态系统内的项目。在这里,您可以关注有趣的作者,组建团队,并在算法交易项目上进行协作。
价格行为分析工具包开发(第七部分):信号脉冲智能交易系统(EA)
借助“信号脉冲(Signal Pulse)”这款MQL5智能交易系统(EA),释放多时间框架分析的潜力。该EA整合了布林带(Bollinger Bands)和随机震荡器(Stochastic Oscillator),以提供准确、高概率的交易信号。了解如何实施这一策略,并使用自定义箭头有效直观地显示买入和卖出机会。非常适合希望借助多时间框架的自动化分析来提升自身判断能力的交易者。
MQL5 向导技巧须知(第27部分):移动平均线与攻击角度
攻击角度是一个经常被引用的指标,其陡峭程度被认为与当前趋势的强度密切相关。让我们来看一下通常如何使用和理解该指标,并探讨在测量时是否可以做出一些改变,以优化那些将其纳入交易系统的应用效果。
开发回放系统(第 63 部分):玩转服务(四)
在本文中,我们将最终解决一分钟柱形上的分时报价模拟问题,以便它们能够与真实分时报价共存。这将帮助我们避免将来出现问题。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
神经网络变得简单(第 96 部分):多尺度特征提取(MSFformer)
高效提取与集成长期依赖关系和短期特征,仍然是时间序列分析中的一项重要任务。它们的正确理解及整合,对于创建准确可靠的预测模型是必要的。
开发回放系统(第 56 部分):调整模块
虽然模块之间已经可以正常交互,但在回放服务中尝试使用鼠标指标时会出现错误。在进入下一步之前,我们需要解决这个问题。此外,我们还将修复鼠标指标代码中的一个问题。所以这个版本经过适当的打磨,最终会稳定下来。
将 ML 模型与策略测试器集成(第 3 部分):CSV(II)文件管理
这篇资料提供了以 MQL5 创建类,从而高效管理 CSV 文件的完整指南。 我们将看到打开、写入、读取、和转换数据等方法的实现。 我们还将研究如何使用它们来存储和访问信息。 此外,我们将讨论使用该类的限制和最重要的方面。 本文对于那些想要学习如何在 MQL5 中处理 CSV 文件的人来说是一个宝贵的资源。
在 MQL5 中实现广义赫斯特指数和方差比检验
在本文中,我们将研究如何利用广义赫斯特指数(Generalized Hurst Exponent)和方差比检验(Variance Ratio Test)来分析 MQL5 中价格序列的行为。
将 MQL5 与数据处理包集成(第 1 部分):高级数据分析和统计处理
集成实现了无缝的工作流程,来自 MQL5 的原始金融数据可以导入到 Jupyter Lab 等数据处理包中,用于包括统计测试在内的高级分析。
MQL5 中的范畴论 (第 10 部分):幺半群组
本文是以 MQL5 实现范畴论系列的延续。 在此,我们将”幺半群-组“视为常规化幺半群集的一种手段,令它们在更广泛的幺半群集和数据类型中更具可比性。
开发多币种 EA 交易(第 7 部分):根据前向时间段选择组
在此之前,我们曾对一组交易策略实例的选择进行过评估,目的是改进它们的联合运行结果,但这只是在对单个实例进行优化的同一时间段进行的。让我们拭目以待在前向时间段会发生什么。