数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测
在外汇市场中,如果不了解过去的情况,就很难预测未来的趋势。很少有机器学习模型能够通过考虑过去的数据来做出未来预测。在本文中,我们将讨论如何使用经典(非时间序列)人工智能模型来战胜市场。
矩阵分解基础知识
由于这里的目标是教学,我们将尽可能简单地进行。也就是说,我们将只实现所需的功能:矩阵乘法。今天您将看到,这足以模拟矩阵标量乘法。许多人在使用矩阵分解实现代码时遇到的最大困难是:与标量分解不同,在标量分解中,几乎所有情况下因子的顺序都不会改变结果,但使用矩阵时情况并非如此。
种群优化算法:社群进化(ESG)
我们将研究构造多种群算法的原理。作为该算法类别的一个示例,我们将查看新的自定义算法 — 社群进化(ESG)。我们将分析该算法的基本概念、种群互动机制和优势,并检查其在优化问题中的表现。
开发回放系统(第 63 部分):玩转服务(四)
在本文中,我们将最终解决一分钟柱形上的分时报价模拟问题,以便它们能够与真实分时报价共存。这将帮助我们避免将来出现问题。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
MQL5 中的范畴论 (第 10 部分):幺半群组
本文是以 MQL5 实现范畴论系列的延续。 在此,我们将”幺半群-组“视为常规化幺半群集的一种手段,令它们在更广泛的幺半群集和数据类型中更具可比性。
人工电场算法(AEFA)
本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。
将 ML 模型与策略测试器集成(第 3 部分):CSV(II)文件管理
这篇资料提供了以 MQL5 创建类,从而高效管理 CSV 文件的完整指南。 我们将看到打开、写入、读取、和转换数据等方法的实现。 我们还将研究如何使用它们来存储和访问信息。 此外,我们将讨论使用该类的限制和最重要的方面。 本文对于那些想要学习如何在 MQL5 中处理 CSV 文件的人来说是一个宝贵的资源。
MQL5 交易工具包(第 2 部分):扩展和实现仓位管理 EX5 库
了解如何在 MQL5 代码或项目中导入和使用 EX5 库。在这篇续文中,我们将通过向现有库中添加更多仓位管理功能并创建两个 EA 交易系统来扩展 EX5 库。第一个例子将使用可变指数动态平均(Variable Index Dynamic Average,VIDYA)技术指标来开发追踪止损交易策略 EA 交易,而第二个例子将利用交易面板来监控、开仓、平仓和修改仓位。这两个例子将演示如何使用和实现升级后的 EX5 仓位管理库。
开发多币种 EA 交易(第 4 部分):虚拟挂单和保存状态
在开始开发多币种 EA 后,我们已经取得了一些成果,并成功地进行了多次代码改进迭代。但是,我们的 EA 无法处理挂单,也无法在终端重启后恢复运行。让我们添加这些功能。
开发回放系统 — 市场模拟(第 27 部分):智能交易系统项目 — C_Mouse 类
在本文中,我们将实现 C_Mouse 类。它提供了最高级别的编程能力。不过,说到高级或低级编程语言,并不是在代码中包含污言秽语或行话。它有其它含义。当我们谈论高级或低级编程时,我们意指对于其他程序员来说理解代码是多么容易或困难。
开发多币种 EA 交易(第 7 部分):根据前向时间段选择组
在此之前,我们曾对一组交易策略实例的选择进行过评估,目的是改进它们的联合运行结果,但这只是在对单个实例进行优化的同一时间段进行的。让我们拭目以待在前向时间段会发生什么。
开发多币种 EA 交易系统(第 16 部分):不同报价历史对测试结果的影响
正在开发中的 EA 预计在与不同经纪商进行交易时都会表现出良好的效果。但目前我们一直使用 MetaQuotes 模拟账户的报价进行测试。让我们看看我们的 EA 是否准备好使用与测试和优化期间使用的报价不同的交易账户。
MQL5中的范畴论(第20部分):自我注意的迂回与转换
我们暂时离开我们的系列文章,考虑一下 chatGPT 中的部分算法。有没有从自然变换中借鉴的相似之处或概念?我们尝试用信号类格式的代码,在一篇有趣的文章中回答这些和其他问题。
开发回放系统(第 56 部分):调整模块
虽然模块之间已经可以正常交互,但在回放服务中尝试使用鼠标指标时会出现错误。在进入下一步之前,我们需要解决这个问题。此外,我们还将修复鼠标指标代码中的一个问题。所以这个版本经过适当的打磨,最终会稳定下来。
您应当知道的 MQL5 向导技术(第 13 部分):智能信号类 DBSCAN
《基于密度的空间聚类参与噪声应用》是一种无监督的数据分组形式,除 2 个参数外,几乎不需要任何输入参数,比之其它方式,譬如 k-平均,这是一个福音。我们深入研究使用由向导组装的智能系统如何在测试、及最终交易时起到建设性作用。
在MQL5中创建交易管理员面板(第六部分):多功能界面(一)
交易管理员的角色不仅限于Telegram通信,他们还可以参与各种控制活动,包括订单管理、持仓跟踪和界面定制。在本文中,我们将分享有关扩展程序以支持MQL5中多种功能的实用见解。此次更新旨在克服当前管理员面板主要聚焦于通信这一局限,使其能够处理更广泛的任务。
MQL5中的范畴论(第21部分):使用LDA的自然变换
这篇文章是我们系列的第21篇,继续研究自然变换以及如何使用线性判别分析(linear discriminant analysis,LDA)来实现它们。我们以信号类格式展示了它的应用程序,就像在前一篇文章中一样。
开发回放系统 — 市场模拟(第 21 部分):外汇(II)
我们将继续构建一个在外汇市场工作的系统。为了解决这个问题,我们必须在加载以前的柱线之前首先声明加载跳价。这解决了问题,但同时迫使用户遵循配置文件中的某些结构,就个人而言,这对我来说没有多大意义。原因是,通过设计一个负责分析和执行配置文件中内容的程序,我们可以允许用户按任何顺序声明他需要的元素。
种群优化算法:鸟群算法(BSA)
本文探讨了受自然界鸟类集群行为启发而产生的基于鸟群的算法(BSA)。BSA中的个体采用不同的搜索策略,包括在飞行、警戒和觅食行为之间的切换,使得该算法具有多面性。它利用鸟类集群、交流、适应性、领导与跟随等规则来高效地找到最优解。
神经网络变得简单(第 96 部分):多尺度特征提取(MSFformer)
高效提取与集成长期依赖关系和短期特征,仍然是时间序列分析中的一项重要任务。它们的正确理解及整合,对于创建准确可靠的预测模型是必要的。
数据科学和机器学习(第 17 部分):摇钱树?外汇交易中随机森林的艺术与科学
探索算法炼金术的秘密,我们将引导您融会贯通如何在解码金融领域时将艺术性和精确性相结合。揭示随机森林如何将数据转化为预测能力,为驾驭股票市场的复杂场景提供独特的视角。加入我们的旅程,进入金融魔法的心脏地带,此处我们会揭开随机森林在塑造市场命运、及解锁赚钱机会之门方面之角色的神秘面纱
MQL5 向导技巧须知(第27部分):移动平均线与攻击角度
攻击角度是一个经常被引用的指标,其陡峭程度被认为与当前趋势的强度密切相关。让我们来看一下通常如何使用和理解该指标,并探讨在测量时是否可以做出一些改变,以优化那些将其纳入交易系统的应用效果。
DoEasy. 控件 (第 18 部分): TabControl 中滚动选项卡的功能
在本文中,我将在 TabControl WinForms 对象中放置滚动标题控件的按钮,以防标题栏不适配控件的尺寸。 此外,我还将实现单击裁剪过的选项卡标题时,标题栏的平移。
群体优化算法:思维进化计算(MEC)算法
本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。
开发多币种 EA 交易(第 6 部分):自动选择实例组
在优化交易策略后,我们会收到一组参数。我们可以使用它们在一个 EA 中创建多个交易策略实例。以前,我们都是手动操作。在此,我们将尝试自动完成这一过程。
在 MQL5 中实现广义赫斯特指数和方差比检验
在本文中,我们将研究如何利用广义赫斯特指数(Generalized Hurst Exponent)和方差比检验(Variance Ratio Test)来分析 MQL5 中价格序列的行为。
软件开发和 MQL5 中的设计范式(第 3 部分):行为范式 1
来自设计范式文献的一篇新文章,我们将看到类型其一,即行为范式,从而理解我们如何有效地在所创建对象之间构建通信方法。通过完成这些行为范式,我们就能够理解创建和构建可重用、可扩展、经过测试的软件。
交易中的神经网络:统一轨迹生成模型(UniTraj)
理解个体在众多不同领域的行为很重要,但大多数方法只专注其中一项任务(理解、噪声消除、或预测),这会降低它们在现实中的有效性。在本文中,我们将领略一个可以适配解决各种问题的模型。
神经网络变得简单(第 59 部分):控制二分法(DoC)
在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。
价格行为分析工具包开发(第七部分):信号脉冲智能交易系统(EA)
借助“信号脉冲(Signal Pulse)”这款MQL5智能交易系统(EA),释放多时间框架分析的潜力。该EA整合了布林带(Bollinger Bands)和随机震荡器(Stochastic Oscillator),以提供准确、高概率的交易信号。了解如何实施这一策略,并使用自定义箭头有效直观地显示买入和卖出机会。非常适合希望借助多时间框架的自动化分析来提升自身判断能力的交易者。