
最负盛名的人工协作搜索算法的改进版本(AXSm)
在这里,我们将探讨 ACS 算法的演变:三种修改旨在改善收敛特性和算法效率。对最领先的优化算法之一进行修订改版。从数据矩阵修改到种群形成的革命性方法。

神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)
最后两篇文章研究了软性扮演者-评论者算法,该算法将熵正则化整合到奖励函数当中。这种方式在环境探索和模型开发之间取得平衡,但它仅适用于随机模型。本文提出了一种替代方式,能适用于随机模型和确定性模型两者。

交易中的神经网络:统一轨迹生成模型(UniTraj)
理解个体在众多不同领域的行为很重要,但大多数方法只专注其中一项任务(理解、噪声消除、或预测),这会降低它们在现实中的有效性。在本文中,我们将领略一个可以适配解决各种问题的模型。

DoEasy. 控件 (第 20 部分): SplitContainer WinForms 对象
在本文中,我将启动开发模拟 MS Visual Studio工具包的 SplitContainer 控件。 此控件由两个垂直或水平可移动隔板分开的面板组成。

为 MetaTrader 5 开发一款 MQTT 客户端:TDD 方式 - 第2部分
本文是描述 MQTT 协议的本机MQL5客户端开发步骤系列文章的一部分。在这一部分中,我们将描述我们的代码组织、第一个头文件和类,以及我们如何编写测试。本文还包括关于测试驱动开发实践以及我们如何将其应用于该项目的简要说明。


DoEasy 函数库中的图形(第九十四部分):移动和删除复合图形对象
在本文中,我将启动开发各种复合图形对象事件。 我们还将部分研究移动和删除复合图形对象。 实际上,在此,我还会把前一篇文章中实现的东西进行微调。

将 MQL5 与数据处理包集成(第 1 部分):高级数据分析和统计处理
集成实现了无缝的工作流程,来自 MQL5 的原始金融数据可以导入到 Jupyter Lab 等数据处理包中,用于包括统计测试在内的高级分析。

使用Python和MQL5进行多交易品种分析(第一部分):纳斯达克集成电路制造商
加入我们的讨论,了解如何利用人工智能(AI)优化您的仓位规模和订单数量,以最大化您的投资组合回报。我们将展示如何通过算法识别一个最优的投资组合,并根据您的回报预期或风险承受能力来调整投资组合。在本次讨论中,我们将使用SciPy库和MQL5语言,利用所拥有的全部数据创建一个最优且多样化的投资组合。

开发回放系统 — 市场模拟(第 14 部分):模拟器的诞生(IV)
在本文中,我们将继续探讨模拟器开发的新阶段。 这次,我们会见到如何有效地创建随机游走类型的走势。 这种类型的走势非常引人入胜,因为它是构成资本市场上所发生一切的基础。 此外,我们将开始了解一些对于进行市场分析至关重要的概念。

交易中的神经网络:将全局信息注入独立通道(InjectTST)
大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。

化学反应优化 (CRO) 算法(第二部分):汇编和结果
在第二部分中,我们将把化学运算符整合到一个算法中,并对其结果进行详细分析。让我们来看看化学反应优化 (CRO) 方法是如何解决测试函数的复杂问题的。

MQL5 中的范畴论 (第 12 部分):秩序(Orders)
本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。

MQL5 中的范畴论 (第 17 部分):函子与幺半群
本文是我们系列文章的最后一篇,将函子作为一个主题来讨论,且把幺半群作为一个范畴来重新审视。幺半群已在我们的系列中多次讲述,于此配合多层感知器帮助确定持仓规模。

开发回放系统 — 市场模拟(第 25 部分):为下一步做准备
在本文中,我们将会完结开发回放和模拟系统的第一阶段。尊敬的读者,有了这样的成就,我确认该系统已经达到了高级水平,为引入新功能铺平了道路。目标是进一步丰富该系统,将其转变为研究和开发市场分析的强力工具。

重构经典策略(第十一部分)移动平均线的交叉(二)
移动平均线和随机振荡器可用于生成趋势跟踪交易信号。然而,这些信号只有在价格行为发生之后才会被观察到。我们可以有效地利用人工智能克服技术指标中这种固有的滞后性。本文将教您如何创建一个完全自主的人工智能驱动型EA,这种方式可以改进您现有的任何交易策略。即使是最古老的交易策略也可以被改进。

您应当知道的 MQL5 向导技术(第 11 部分):数字墙
数字墙(Number Walls)是线性回移寄存器的一种变体,其通过检查收敛性来预筛选序列来达到可预测性。我们看看这些思路如何运用在 MQL5。

用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试
本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!

种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)
本文释义了一种解决优化问题的新方式,即把细菌觅食优化(BFO)算法和遗传算法(GA)中所用的技术结合到混合型 BFO-GA 算法当中。它用细菌群落来全局搜索最优解,并用遗传运算器来优调局部最优值。与原始的 BFO 不同,细菌现在可以突变,并继承基因。

在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘
本文中,我们将在MQL5中开发一个动态多品种、多周期相对强弱指数(RSI)指标仪表盘,为交易者提供跨不同品种和时间段的实时RSI值。该仪表盘具备交互式按钮、实时更新功能和有色编码的指标,以帮助交易者做出明智的决策。


DoEasy. 控件 (第 32 部分): 水平滚动条,鼠标轮滚动
在本文中,我们将完成水平滚动条对象功能的开发。我们还将令移动滚动条滑块和旋转鼠标滚轮来滚动容器的内容成为可能,以及考虑到 MQL5 中的新订单执行策略,和新的运行时错误代码,在函数库里相应添加。

MQL5 向导技巧须知(第27部分):移动平均线与攻击角度
攻击角度是一个经常被引用的指标,其陡峭程度被认为与当前趋势的强度密切相关。让我们来看一下通常如何使用和理解该指标,并探讨在测量时是否可以做出一些改变,以优化那些将其纳入交易系统的应用效果。

重构经典策略(第七部分):基于USDJPY的外汇市场与主权债务分析
在今天的文章中,我们将分析汇率走势与政府债券之间的关系。债券是固定收益证券中最受欢迎的形式之一,将成为我们讨论的重点。加入我们,一起探索是否可以利用人工智能技术改进一种经典策略。

数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测
在外汇市场中,如果不了解过去的情况,就很难预测未来的趋势。很少有机器学习模型能够通过考虑过去的数据来做出未来预测。在本文中,我们将讨论如何使用经典(非时间序列)人工智能模型来战胜市场。

MQL5 中的范畴论 (第 15 部分):函子与图论
本文是以 MQL5 实现范畴论,着眼于函子之系列的续篇,但这次是作为图论和集合之间的桥梁。我们重新审视日历数据,尽管它在策略测试器中存在使用局限,但在相关性的帮助下,可利用函子来预测波动性。

MQL5 中的范畴论 (第 16 部分):多层感知器函子
本文是我们系列文章的第 16 篇,继续考察函子以及如何使用人工神经网络实现它们。我们偏离了迄今为止在该系列中所采用的方式,这涉及预测波动率,并尝试实现自定义信号类来设置入仓和出仓信号。

人工蜂巢算法(ABHA):测试与结果
在本文中,我们将继续深入探索人工蜂巢算法(ABHA),通过深入研究代码并探讨其余的方法。正如您可能还记得的那样,模型中的每只蜜蜂都被表示为一个独立的智能体,其行为取决于内部和外部信息以及动机状态。我们将在各种函数上测试该算法,并通过在评分表中呈现结果来总结测试效果。

创建 MQL5-Telegram 集成 EA 交易(第 5 部分):从 Telegram 向 MQL5 发送命令并接收实时响应
在本文中,我们创建了几个类来促进 MQL5 和 Telegram 之间的实时通信。我们专注于从 Telegram 获取命令,解码和解释它们,并发送适当的响应。最后,我们确保这些交互在交易环境中得到有效测试和运行。

神经网络变得轻松(第五十五部分):对比内在控制(CIC)
对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。

您应当知道的 MQL5 向导技术(第 39 部分):相对强度指数
RSI 是一款流行的动量震荡指标,衡量证券近期价格变化的速度和规模,从而评估证券价格中被高估和低估的情况。这些对速度和幅度的洞察是定义反转点的关键。我们将这个振荡器放入另一个自定义信号类中工作,并验证其信号的一些特征。不过,我们先从总结我们之前在布林带的内容开始。

价格行为分析工具包开发(第一部分):图表投影仪
本项目旨在利用 MQL5 程序算法为 MetaTrader 5 开发一套全面的分析工具。这些工具包括脚本、指标、人工智能模型以及EA,能够自动地进行市场分析。在某些情况下,这些工具能够完全无需人工干预地进行高级分析,并将预测结果发送到相应的平台。绝不会错过任何机会。请与我一同探索构建一套强大的自定义市场分析工具箱。我们将从开发一个简单的 MQL5 程序开始,我将其命名为“图表投影仪”。

基于MQL5的自动化交易策略(第一部分):Profitunity系统(比尔·威廉姆斯的《交易混沌》)
在本文中,我们研究了比尔·威廉姆斯(Bill Williams)的Profitunity系统,深入剖析其核心组成部分以及在混沌市场中独特的交易方法。我们指导读者在MQL5中实现该系统,专注于自动化关键指标和入场/出场信号。最后,我们对策略进行测试和优化,提供其在不同市场环境下的表现。

软件开发和 MQL5 中的设计范式(第 4 部分):行为范式 2
在本文中,我们将终结有关设计范式主题的系列文章,我们提到有三种类型的设计范式:创建型、结构型、和行为型。我们将终结行为类型的其余范式,其可以帮助设置对象之间的交互方法,令我们的代码更整洁。

在MQL5中创建交易管理员面板(第六部分):多功能界面(一)
交易管理员的角色不仅限于Telegram通信,他们还可以参与各种控制活动,包括订单管理、持仓跟踪和界面定制。在本文中,我们将分享有关扩展程序以支持MQL5中多种功能的实用见解。此次更新旨在克服当前管理员面板主要聚焦于通信这一局限,使其能够处理更广泛的任务。

如何利用 MQL5 创建简单的多币种智能交易系统(第 7 部分):依据动量振荡器指标的之字折线
本文中的多货币智能系统是利用之字折线(ZigZag)指标的自动交易系统,该指标依据动量振荡器过滤、或彼此过滤信号。