Статьи по машинному обучению в трейдинге

icon

Создание торговых роботов на основе искусственного интеллекта: нативная интеграция с Python, операции с матрицами и векторами, библиотеки математики и статистики и многое другое.

Узнайте, как использовать машинное обучение в трейдинге. Нейроны, перцептроны, сверточные и рекуррентные сети, модели прогнозирования — начните с основ и продвигайтесь к созданию собственного ИИ. Вы научитесь обучать и применять нейронные сети для алгоритмической торговли на финансовых рынках.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (Основные компоненты)

Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (Основные компоненты)

В статье мы подробно рассмотрели интеграцию модуля SSAM в блок SEW‑ResNeXt, демонстрируя, как фреймворк S3CE‑Net позволяет эффективно объединять спайковое внимание с остаточными блоками. Такая архитектура обеспечивает точную обработку временных и пространственных потоков данных и высокую стабильность обучения. Модульность и гибкость компонентов упрощают расширение модели и повторное использование проверенных методов.
preview
Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (S3CE-Net)

Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (S3CE-Net)

Приглашаем к знакомству с фреймворком S3CE-Net и его механизмами SSAM и STFS, которые точно обрабатывают спайковые события с учётом каузальности. Модель лёгкая, параллельная и умеет выявлять сложные связи во времени и пространстве.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Окончание)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Окончание)

В данной статье показана практическая реализация фреймворка SEW ResNet средствами MQL5 с акцентом на прикладное применение в торговле. Двойной Bottleneck даёт возможность одновременно анализировать унитарные потоки и межканальные зависимости, не теряя градиентов при обучении. Спайковые активации с адаптивными порогами и гейты повышают устойчивость к шуму и чувствительность к новизне рынка. В тексте приведены детали реализации и результаты тестов.
preview
Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 2): Создание синтетического символа для тестирования

Генеративно-состязательные сети (GAN) для синтетических данных в сфере финансового моделирования (Часть 2): Создание синтетического символа для тестирования

В этой статье мы создаем синтетический символ с использованием генеративно-состязательной сети (GAN), которая включает в себя генерацию реалистичных финансовых данных, имитирующих поведение реальных рыночных инструментов, таких как EURUSD. Модель GAN изучает закономерности и волатильность на основе исторических рыночных данных и создает синтетические ценовые данные с аналогичными характеристиками.
preview
Алгоритм голубых обезьян — Blue Monkey (BM) Algorithm

Алгоритм голубых обезьян — Blue Monkey (BM) Algorithm

В статье представлена реализация метаэвристического алгоритма Blue Monkey, основанного на моделировании социального поведения голубых мартышек. Рассматриваются ключевые механизмы алгоритма - групповая структура популяции, следование за локальными лидерами и обновление поколений через замену худших взрослых особей лучшими детёнышами, а также анализируются результаты тестирования.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Интеграция спайков)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (Интеграция спайков)

В статье представлена практическая реализация ключевых компонентов фреймворка SEW-ResNet средствами MQL5. Использование динамических массивов и спайковых механизмов позволяет гибко строить архитектуру модели и эффективно обрабатывать финансовые временные ряды. Предложенные решения показывают, как SEW-ResNet может оптимизировать вычисления и улучшить выделение значимых признаков.
preview
Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (SEW-ResNet)

Нейросети в трейдинге: Обучение глубоких спайкинговых моделей (SEW-ResNet)

Приглашаем к знакомству с фреймворком SEW-ResNet, который позволяет строить глубокие спайковые модели без проблем деградации и с эффективным управлением градиентами. В этой статье мы демонстрируем, как реализовать базовый спайковый нейрон и его алгоритмы средствами MQL5.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM(IV) — Тестирование торговой стратегии

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (Окончание)

Нейросети уже меняют подход к анализу рынков, а новые архитектуры открывают ещё больше возможностей. В статье мы завершаем работу с фреймворком SpikingBrain, который отрывает перед нами новые перспективы.
preview
Алгоритм Поиска Ворона — Crow Search Algorithm (CSA)

Алгоритм Поиска Ворона — Crow Search Algorithm (CSA)

Алгоритм Поиска Ворона (CSA) — это элегантная метаэвристика, вдохновленная умением ворон прятать пищу и находить чужие тайники, которая решает задачи оптимизации через баланс между следованием за успешными решениями и случайным исследованием пространства поиска. Выясним, насколько алгоритм производителен.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (Основные компоненты)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (Основные компоненты)

Предлагаем вниманию читателя реализацию подходов фреймворка SpikingBrain на основе рекуррентного линейного внимания с гейтами, подробно разобранного в этой статье. Алгоритмы прямого прохода, распределения градиентов и обновления весов обеспечивают эффективную обработку финансовых временных рядов и позволяют воплотить ключевые идеи фреймворка на практике.
preview
Алгоритм Бизона — Bison Algorithm (BIA)

Алгоритм Бизона — Bison Algorithm (BIA)

Новый оптимизационный метод Bison Algorithm (BIA) — две стратегии, заимствованные из поведения бизонов, для непрерывных задач с одной целевой функцией. Ключевыми особенностями BIA являются два основополагающих принципа, заимствованных из поведения бизонов, это способность к динамичному перемещению и оборонительная стратегия.
preview
Символьное уравнение прогнозирования цены с использованием SymPy

Символьное уравнение прогнозирования цены с использованием SymPy

Статья описывает интересный подход к алготрейдингу, основанный на символьных математических уравнениях вместо традиционных "черных ящиков" машинного обучения. Автор показывает, как преобразовать непрозрачные нейросети в читаемые математические формулы через библиотеку SymPy и полиномиальную регрессию, что позволяет полностью понимать логику принятия торговых решений. Подход сочетает вычислительную мощь ML с прозрачностью классических методов, давая трейдеру возможность анализировать, корректировать и адаптировать модели в реальном времени.
preview
Скрытые марковские модели для прогнозирования волатильности с учетом тренда

Скрытые марковские модели для прогнозирования волатильности с учетом тренда

Скрытые марковские модели (СММ) — это мощный статистический инструмент, позволяющий выявлять скрытые состояния рынка на основе анализа наблюдаемых ценовых движений. В трейдинге СММ позволяют улучшить прогнозирование волатильности и применяются при разработке трендовых стратегий, моделируя изменения рыночных режимов. В этой статье мы представим пошаговый процесс разработки стратегии следования за трендом, которая использует СММ в качестве фильтра для прогнозирования волатильности.
preview
Нейросети в трейдинге: От трансформеров к спайковым нейронам (SpikingBrain)

Нейросети в трейдинге: От трансформеров к спайковым нейронам (SpikingBrain)

Фреймворк SpikingBrain демонстрирует уникальный подход к обработке данных: нейроны реагируют только на значимые события, эффективно фильтруя шум. Его событийная архитектура снижает вычислительные затраты, сохраняя ключевую информацию о движениях. Адаптивные пороги и возможность использования предварительно обученных модулей обеспечивают гибкость и масштабируемость модели.
preview
Прогнозирование условного распределения с помощью MLP

Прогнозирование условного распределения с помощью MLP

В данной статье мы рассмотрим модель регрессии на базе MLP, которая прогнозирует не только условное математическое ожидание, но и условную дисперсию. Другими словами, мы будем учить нашу сеть предсказывать целое распределение будущих цен на основе входного вектора признаков. Но для этой цели нам придется написать свою собственную функцию потерь.
preview
Модификация Алгоритма оптимизации динго — Dingo Optimization Algorithm M (DOAm)

Модификация Алгоритма оптимизации динго — Dingo Optimization Algorithm M (DOAm)

Представленная в статье авторская модификация алгоритма динго высоко подняла планку для поиска лучшего из лучших алгоритма оптимизации. Возможны ли еще более высокие результаты?
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Окончание)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Окончание)

В статье подробно рассмотрена интеграция подходов фреймворка ST-Expert в архитектуру Extralonger, позволяющая одновременно анализировать временные и пространственные представления данных. Представлены результаты тестирования на реальных исторических данных, демонстрирующие эффективность модели и её устойчивость к рыночным аномалиям. Описана модульная структура фреймворка, обеспечивающая воспроизводимость, гибкость для исследований и возможность поэтапной оптимизации компонентов.
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Модули внимания)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Модули внимания)

В данной статье мы продолжаем реализацию подходов фреймворка ST-Expert, сосредотачиваясь на практических аспектах его применения средствами MQL5. Ранее мы рассмотрели теоретические основы и ключевые компоненты модели, а теперь переходим к непосредственной работе с алгоритмами графового внимания, локального и глобального распределения внимания. Основная цель текущей работы — показать, как концептуальные идеи ST-Expert превращаются в работоспособные решения для анализа и прогнозирования финансовых рядов.
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (ST-Expert)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (ST-Expert)

В этой статье мы познакомимся с фреймворком ST-Expert, который обеспечивает устойчивость прогнозов к рыночной неопределённости, позволяя учитывать локальные и глобальные зависимости во временных рядах. Его гибкая архитектура способствует адаптивности моделей и повышает точность предсказаний.
preview
Алгоритм оптимизации динго — Dingo Optimization Algorithm (DOA)

Алгоритм оптимизации динго — Dingo Optimization Algorithm (DOA)

В статье представлен новый метаэвристический метод, основанный на охотничьих стратегиях австралийских динго: групповой атаке, преследовании и поиске падали. Посмотрим, как алгоритм оптимизации динго (DOA) покажет себя алгоритмически.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Фреймворк Extralonger демонстрирует уникальную способность интегрировать пространственные и временные факторы в единую модель, обеспечивая высокую точность прогнозов. Его архитектура позволяет адаптироваться к разным горизонтам планирования и финансовым инструментам, сохраняя прозрачность и управляемость системы.
preview
Арбитражная алготорговля на теории графов

Арбитражная алготорговля на теории графов

В рамках статьи треугольный арбитраж представляется как задача поиска циклов в ориентированном графе, где вершины — валюты, рёбра — валютные пары с весами-курсами. Прибыльный цикл: произведение весов >1. Созданные нами алгоритмы Floyd-Warshall и DFS находят оптимальные пути обмена валют, возвращающиеся в исходную точку с прибылью.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Продолжаем работу по реализации подходов, предложенных авторами фреймворка Extralonger. На этот раз сосредоточимся на построении модуля Global-Local Spatial Attention средствами MQL5, рассматривая как его структуру, так и практическую интеграцию в общий вычислительный процесс.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Фреймворк Extralonger демонстрирует подход к интеграции пространственных и временных факторов в единую модель, что позволяет одновременно учитывать локальные закономерности и долгосрочные циклы. Такая архитектура делает прогнозирование временных рядов более устойчивым к рыночному шуму и открывает возможность анализа данных на разных горизонтах. В статье подробно рассматривается, как эти идеи воплощаются на практике средствами OpenCL и MQL5.
preview
Торговый робот на языковой GPT-модели

Торговый робот на языковой GPT-модели

Статья представляет полную реализацию TimeGPT — специализированной архитектуры на основе Transformer для прогнозирования финансовых временных рядов на платформе MetaTrader 5. Рассмотрена адаптация механизма внимания для финансовых данных, селективная токенизация изменений цены, hardware-aware оптимизации и продвинутые техники обучения. Включены результаты практического тестирования, показавшие точность прогнозов 87% при горизонте 24 бара с временем обучения 15 минут на CPU. Представлен готовый торговый советник с автоматическим переобучением.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

В статье мы завершаем работу по построению фреймворка SAGDFN средствами MQL5, подводя итоги разработки и демонстрируя результаты его практического тестирования. Объединим реализованные ранее модули в единую систему^ покажем сильные стороны подхода, отметим его уязвимости и обсудим возможные пути доработки.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (модуль внимания)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (модуль внимания)

В этой статье мы подробно рассмотрим практическую реализацию ключевых компонентов фреймворка SAGDFN. Покажем, как организованы разреженное внимание и выбор значимых соседей для прогнозирования временных рядов. Представленные подходы демонстрируют баланс между точностью прогнозов и эффективностью вычислений.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 51): Обучение с подкреплением с помощью SAC

Возможности Мастера MQL5, которые вам нужно знать (Часть 51): Обучение с подкреплением с помощью SAC

Soft Actor Critic (мягкий актер-критик) — это алгоритм обучения с подкреплением, использующий три нейронные сети — сеть актеров и две сети критиков. Такие модели машинного обучения объединены в партнерство "главный-подчиненный", где критики моделируются для повышения точности прогнозов сети актеров. Как обычно, рассмотрим, как эти идеи можно протестировать в качестве пользовательского сигнала советника, собранного с помощью Мастера.
preview
Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Стратегия Darvas Box Breakout, созданная Николасом Дарвасом, представляет собой подход в технической торговле, который выявляет потенциальные сигналы на покупку, когда цена акций поднимается выше установленного диапазона «коридора», что указывает на сильный восходящий импульс. В этой статье мы применим эту стратегическую концепцию в качестве примера для изучения трех передовых методов машинного обучения. К ним относятся использование модели машинного обучения для генерации сигналов вместо фильтрации сделок, применение непрерывных сигналов вместо дискретных и использование для подтверждения сделок моделей, обученных на разных таймфреймах.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

В статье мы раскрываем архитектуру SAGDFN — современного фреймворка, способного преобразовать подход к обработке пространственно-временных данных. Он сохраняет ключевую информацию даже в сложных графах и при этом снижает вычислительные издержки.
preview
Нейросетевой торговый советник на базе PatchTST

Нейросетевой торговый советник на базе PatchTST

Статья представляет революционную архитектуру PatchTST — специально адаптированный трансформер для анализа финансовых временных рядов, который разбивает рыночные данные на патчи из 16 баров для эффективной обработки. Подробно рассматривается полная реализация торгового робота в MQL5 — от математических основ и структур данных до готового Expert Advisor с системами управления рисками и непрерывного обучения.
preview
Методы повторной выборки для оценки прогнозирования и классификации в MQL5

Методы повторной выборки для оценки прогнозирования и классификации в MQL5

В этой статье рассмотрим и реализуем методы оценки качества модели, которые используют один и тот же набор данных как для обучения, так и для проверки.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

В статье описана практическая реализация фреймворка HimNet на базе MQL5, который готов к интеграции в автоматическую торговлю. Мы показываем, как метапараметры, адаптированные под гетерогенность, превращают модель в универсальный инструмент, способный справляться с изменчивой волатильностью.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

В этой статье мы подробно рассматриваем алгоритмы реализации ключевых компонентов фреймворка HimNet. Демонстрируем, как при минимальном числе обучаемых компонентов достигается высокая согласованность и управляемость всей системы. Представленная реализация отличается компактностью и прозрачностью, что облегчает её адаптацию к реальным рыночным задачам.
preview
Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Статья представляет инновационную гибридную систему для прогнозирования валютных курсов, которая сочетает линейную авторегрессионную модель с архитектурой U-Transformer для анализа остатков. Система автоматически переключается между источниками сигналов в зависимости от их качества и включает полноценную торговую логику с averaging/pyramiding стратегиями. Ключевое преимущество подхода заключается в том, что нейросеть обучается на остатках линейной модели, что упрощает задачу и снижает риск переобучения. Реализация выполнена полностью на MQL5 и готова к использованию в реальной торговле с автоматической адаптацией к изменяющимся рыночным условиям.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Предлагаем познакомиться с фреймворком HimNet, который сочетает гибкость пространственно-временной адаптации с высокой вычислительной эффективностью, позволяя получать точные и стабильные прогнозы на финансовых временных рядах. В статье подробно показано, как его ключевые компоненты взаимодействуют между собой, превращая сложные алгоритмы в управляемую архитектуру.
preview
Алгоритм оптимизации сновидениями — Dream Optimization Algorithm (DOA)

Алгоритм оптимизации сновидениями — Dream Optimization Algorithm (DOA)

Популяционный алгоритм оптимизации, вдохновленный спорным и малоизученным феноменом — механизмом человеческих сновидений. Группы агентов с разной "памятью", косинусоидальная модуляция движения и необычное распределение фаз 99/1 — узнайте, как эти особенности влияют на эффективность оптимизации ваших торговых стратегий.
preview
Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Революционный подход к машинному обучению в трейдинге через квантовые вычисления. Статья демонстрирует практическую реализацию адаптивной системы QRC с постоянным дообучением для прогнозирования рыночных движений в реальном времени.
preview
Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Представляем вашему вниманию завершающий этап реализации и тестирования фреймворка TQNet, в котором теория встречается с реальной торговой практикой. Мы пройдём путь от исторического обучения до стресс-теста на свежих рыночных данных, оценивая устойчивость и точность модели. Итоговые результаты — это не только сухие цифры, но и наглядная демонстрация прикладной ценности предложенного подхода.