Artigos sobre como testar estratégias na linguagem MQL5

icon

Saiba como desenvolver, escrever e testar uma estratégia de negociação, como encontrar os parâmetros ideais do sistema e como analisar os resultados obtidos. A plataforma MetaTrader dispõe de inúmeras funcionalidades para que os desenvolvedores de robôs de negociação testem suas ideias de negociação com rapidez e precisão. Aprenda nestes artigos como testar robôs multimoedas e como usar os recursos da MQL5 Cloud Network para otimização.

É importante os desenvolvedores de sistemas de negociação automatizados começarem por aprender os princípios básicos de como testar e gerar algoritmos de ticks dentro do Testador de Estratégias.

Novo artigo
recentes | melhores
preview
Simulação de mercado (Parte 20): Iniciando o SQL (III)

Simulação de mercado (Parte 20): Iniciando o SQL (III)

Apesar de podermos fazer as coisas com um banco de dados, tendo cerca de 10 ou pouco mais registros. A coisa realmente se torna melhor assimilada, quando usamos um arquivo de banco de dados que contenha mais de 15 mil registros. Ou seja, se você for criar isto manualmente irá ser uma bela de uma tarefa. No entanto, dificilmente você irá encontrar algum banco de dados, mesmo para fins didáticos disponível para download. Mas não precisamos de fato recorrer a este tipo de coisa. Podemos usar o MetaTrader 5, para criar um banco de dados para nos. Neste artigo veremos como fazer isto.
preview
Algoritmo de busca orbital atômica — Atomic Orbital Search (AOS): Modificação

Algoritmo de busca orbital atômica — Atomic Orbital Search (AOS): Modificação

Na segunda parte do artigo, continuaremos o desenvolvimento da versão modificada do algoritmo AOS (Atomic Orbital Search), focando em operadores específicos para aumentar sua eficiência e adaptabilidade. Após analisar as bases e mecânicas do algoritmo, discutiremos ideias para melhorar o desempenho e a capacidade de análise de espaços de soluções complexos, propondo novas abordagens para expandir sua funcionalidade como ferramenta de otimização.
preview
Simulação de mercado (Parte 22): Iniciando o SQL (V)

Simulação de mercado (Parte 22): Iniciando o SQL (V)

Antes que você chute o balde, e decida abandonar o estudo sobre como usar o SQL. Deixe-me lembrá-lo, meu caro leitor, que aqui estamos ainda usando apenas o básico do básico. Ainda não exploramos algumas coisas que são possíveis de serem feitas no SQL. Assim que as explorarmos você verá que o SQL é bem mais prático do que parece. Mesmo que muito provavelmente, eu venha a mudar a direção do que estamos criando. Isto por que, o processo de criação é dinâmico. Irei mostrar um pouco mais sobre como fazer as coisas no SQL. Isto por que, ele de fato é algo que você precisa entender e conhecer. Ficar simplesmente achando que é mais capaz, que toda uma comunidade de programadores e desenvolvedores, apenas lhe fará perder tempo e oportunidade. Tenha calma, pois a coisa irá se tornar ainda mais interessante.
preview
Métodos de William Gann (Parte III): A astrologia funciona?

Métodos de William Gann (Parte III): A astrologia funciona?

A posição dos planetas e estrelas influencia os mercados financeiros? Vamos recorrer à estatística e aos big data para embarcar em uma jornada fascinante pelo mundo onde as estrelas e os gráficos do mercado se cruzam.
preview
Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria

Otimização de nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoria

Este artigo é dedicado ao algoritmo meta-heurístico Atmosphere Clouds Model Optimization (ACMO), que modela o comportamento das nuvens para resolver problemas de otimização. O algoritmo utiliza os princípios de geração, movimento e dispersão de nuvens, adaptando-se às "condições climáticas" no espaço de soluções. O artigo explora como a simulação meteorológica do algoritmo encontra soluções ótimas em um espaço complexo de possibilidades e descreve detalhadamente as etapas do ACMO, incluindo a preparação do "céu", o nascimento das nuvens, seu deslocamento e a concentração de chuva.
preview
Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática

Optimização por nuvens atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Prática

Neste artigo, continuaremos a explorar a implementação do algoritmo ACMO (Atmospheric Cloud Model Optimization). Em particular, discutiremos dois aspectos-chave: o movimento das nuvens para regiões de baixa pressão e a modelagem do processo de chuva, incluindo a inicialização das gotas e sua distribuição entre as nuvens. Analisaremos também outros métodos importantes para a gestão do estado das nuvens e para garantir sua interação com o ambiente.
preview
Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)

Algoritmo do Campo Elétrico Artificial — Artificial Electric Field Algorithm (AEFA)

Este artigo apresenta o Algoritmo do Campo Elétrico Artificial (AEFA), inspirado na lei de Coulomb da força eletrostática. Por meio de partículas carregadas e suas interações, o algoritmo simula fenômenos elétricos para resolver tarefas complexas de otimização. O AEFA demonstra propriedades únicas em relação a outros algoritmos baseados em leis da natureza.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 8): Desenvolvimento do Expert Advisor (II)

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 8): Desenvolvimento do Expert Advisor (II)

Pense em um Expert Advisor independente. Anteriormente, discutimos um Expert Advisor baseado em indicador que também contava com um script independente para desenhar a geometria de risco e recompensa. Hoje, discutiremos a arquitetura de um Expert Advisor em MQL5, que integra todos os recursos em um único programa.
preview
Métodos de otimização da biblioteca Alglib (Parte II)

Métodos de otimização da biblioteca Alglib (Parte II)

Neste artigo, continuaremos a análise dos métodos de otimização restantes da biblioteca ALGLIB, com foco especial em seus testes em funções complexas e multidimensionais. Isso nos permitirá não apenas avaliar a eficiência de cada algoritmo, mas também identificar seus pontos fortes e fracos em diferentes condições.
preview
Desenvolvendo um EA multimoeda (Parte 20): Organizando o pipeline de etapas de otimização automática de projetos (I)

Desenvolvendo um EA multimoeda (Parte 20): Organizando o pipeline de etapas de otimização automática de projetos (I)

Já criamos diversos componentes que facilitam o processo de otimização automática. Durante sua criação, seguimos a ciclicidade tradicional: desde a criação do código funcional mínimo até a refatoração e a obtenção de um código melhorado. Agora é hora de organizar nossa base de dados, que também é um componente-chave no sistema que estamos criando.