

Outras classes na biblioteca DoEasy (Parte 66): classe-coleção de Sinais MQL5.com
Neste artigo, criaremos uma classe-coleção de sinais - do serviço Sinais MQL5.com - com funções para gerenciar sinais assinados e também modificaremos a classe do objeto-instantâneo do livro de ofertas para exibir o volume total de ordens sell e buy.


Trabalhando com preços e sinais na biblioteca DoEasy (Parte 65): coleção de livros de ofertas e classe para trabalhar com sinais MQL5.com
Neste artigo, criaremos uma classe-coleção de livros de ofertas para todos os símbolos e começaremos a desenvolver a funcionalidade para trabalhar com o serviço de sinais MQL5.com - criaremos uma classe objeto-sinal.

Técnicas úteis e exóticas para a negociação automatizada
Neste artigo, eu demonstrarei algumas técnicas muito interessantes e úteis para a negociação automatizada. Algumas delas podem ser familiares para você. Eu tentarei cobrir os métodos mais interessantes e explicarei por que vale a pena usá-los. Além disso, eu mostrarei o que essas técnicas podem fazer na prática. Nós criaremos Expert Advisors e testaremos todas as técnicas descritas usando as cotações históricas.


Trabalhando com preços na biblioteca DoEasy (Parte 64): livro de ofertas, classes do objeto-instantâneo e objeto-série de instantâneos do livro de ofertas
Neste artigo, criaremos duas classes (a do objeto-instantânea do livro de ofertas e a do objeto-série dos instantâneos do livro de ofertas) e testaremos a criação de uma série de dados do livro de ofertas.


Trabalhando preços na biblioteca DoEasy (Parte 63): livro de ofertas, classe de ordem abstrata do livro de ofertas
Neste artigo, começaremos a desenvolver funcionalidades para trabalhar com o livro de ofertas. Criaremos uma classe de objeto para uma ordem abstrata do livro de ofertas e dos seus herdeiros.


Trabalhando com preços na biblioteca DoEasy (Parte 62): atualização em tempo real da série de ticks, preparação para trabalhar com o livro de ofertas
Neste artigo, atualizaremos em tempo real da coleção de dados de ticks e prepararemos a classe do objeto-símbolo para trabalhar com o livro de ofertas, cujo funcionamento abordaremos no próximo artigo.

Redes neurais de maneira fácil (Parte 10): Atenção Multi-Cabeça
Nós já consideramos anteriormente o mecanismo de self-attention (autoatenção) em redes neurais. Na prática, as arquiteturas de rede neural modernas usam várias threads de self-attention paralelas para encontrar várias dependências entre os elementos de uma sequência. Vamos considerar a implementação de tal abordagem e avaliar seu impacto no desempenho geral da rede.


Trabalhando com preços na biblioteca DoEasy (Parte 61): coleção de séries de ticks para símbolos
Visto que diferentes símbolos podem ser usados durante a operação do programa, é necessário criar uma lista própria para cada um deles. Hoje vamos combinar essas listas numa coleção de dados de ticks. Na verdade, irá tratar-se de uma lista normal baseada numa classe de array dinâmico de ponteiros para instâncias da classe CObject e seus herdeiros da Biblioteca Padrão.


Trabalhando com preços na biblioteca DoEasy (Parte 60): lista-série de dados de dados de tick do símbolo
Neste artigo, criaremos uma lista para armazenar dados de tick de um símbolo e verificaremos tal criação e respectiva recepção de dados a partir dela no EA. Essas listas de dados de tick - separadamente para cada símbolo usado - formarão uma coleção de dados de tick.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 59): objeto para armazenar dados de um tick
Com este artigo, vamos começar a criar a funcionalidade de biblioteca para trabalhar com dados de preços. Hoje vamos criar uma classe de objeto que armazenará todos os dados de preços recebidos no tick a seguir.

Redes Neurais de Maneira Fácil (Parte 9): Documentação do trabalho
Nós já percorremos um longo caminho e o código em nossa biblioteca está se tornando cada vez maior. Isso torna difícil controlar todas as conexões e dependências. Portanto, eu sugiro criar uma documentação para o código criado anteriormente e mantê-lo atualizado a cada nova etapa. A documentação devidamente preparada nos ajudará a ver a integridade do nosso trabalho.


Usando planilhas para construir estratégias de negociação
O artigo descreve os princípios básicos e abordagens que permitem analisar qualquer estratégia usando planilhas - Excel, Calc, Google. Os resultados também são comparados com os do testador do MetaTrader 5.

Redes Neurais de Maneira Fácil (Parte 8): Mecanismos de Atenção
Nos artigos anteriores, nós já testamos várias opções para organizar as redes neurais. Nós também estudamos as redes convolucionais emprestadas dos algoritmos de processamento de imagem. Neste artigo, eu sugiro estudarmos os Mecanismos de Atenção, cujo surgimento deu impulso ao desenvolvimento dos modelos de linguagem.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores
No final do tópico sobre trabalho com séries temporais, realizaremos o armazenamento, a pesquisa e a classificação dos dados armazenados em buffers de indicadores, o que nos permitirá realizar análises posteriores com base nos valores dos indicadores criados assentes na biblioteca para nossos programas. O conceito geral por trás de todas as classes-coleções da biblioteca torna mais fácil encontrar os dados necessários na coleção correspondente, assim, o mesmo será possível na classe que será criada hoje.

WebSocket para MetaTrader 5
Antes do aparecimento das funções de rede na API MQL5 atualizada, os aplicativos MetaTrader eram limitados em sua capacidade de se conectar e interagir com serviços baseados no protocolo WebSocket. Agora a situação mudou. Neste artigo, veremos a implementação da biblioteca WebSocket em MQL5 puro. Uma breve descrição do protocolo WebSocket e um guia passo a passo sobre como usar a biblioteca resultante serão apresentados.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 57): objeto de dados do buffer do indicador
Neste artigo, veremos um objeto que conterá todos os dados de um buffer de um indicador. Tais objetos serão necessários para armazenar dados seriais de buffers de indicadores, e com a ajuda dos quais será possível classificar e comparar dados de buffers de quaisquer indicadores e outros dados semelhantes entre si.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 56): objeto de indicador personalizado, obtenção de dados a partir de objetos-indicadores numa coleção
Neste artigo, veremos a criação de um objeto de indicador personalizado para ser usado em Expert Advisors. Vamos modificar ligeiramente as classes da biblioteca e escrever métodos para receber dados desde objetos-indicadores em Expert Advisors.

Aplicação prática de redes neurais no trading. Python (Parte I)
Neste artigo, analisaremos passo a passo a implementação de um sistema de negociação baseado na programação de redes neurais profundas em Python. Para isso, usaremos a biblioteca de aprendizado de máquina TensorFlow desenvolvida pelo Google. Para descrever as redes neurais, iremos por em uso a biblioteca Keras.

Perceptron Multicamadas e o Algoritmo Backpropagation
Recentemente, ao aumentar a popularidade desses métodos, tantas bibliotecas foram desenvolvidas em Matlab, R, Python, C++, e etc, que recebem o conjunto de treinamento como entrada e constroem automaticamente uma Rede Neural apropriada para o suposto problema. Vamos entender como funciona um tipo básico de Rede Neural, (Perceptron de um único neurônio e Perceptron Multicamadas), e um fascinante algoritmo responsável pelo aprendizado da rede, (Gradiente descendente e o Backpropagation). Tais modelos de rede serviram de base para os modelos mais complexos existentes hoje.

Redes neurais de Maneira Fácil (Parte 6): Experimentos com a taxa de aprendizado da rede neural
Anteriormente, nós consideramos vários tipos de redes neurais junto com suas implementações. Em todos os casos, as redes neurais foram treinadas usando o método gradiente descendente, para o qual nós precisamos escolher uma taxa de aprendizado. Neste artigo, eu quero mostrar a importância de uma taxa corretamente selecionada e o seu impacto no treinamento da rede neural, usando exemplos.

Como ganhar US$ 1 000 000 por meio do trading algorítmico? Nos serviços MQL5.com!
Cada trader chega ao mercado com o objetivo de ganhar seu primeiro milhão de dólares. Como ele pode fazer isso sem muito risco e sem capital inicial? Os serviços MQL5 facilitam isso para desenvolvedores e traders em qualquer país do mundo.

Redes Neurais de Maneira Fácil (Parte 3): Redes Convolucionais
Como uma continuação do tópico das redes neurais, eu proponho ao leitor a análise das redes neurais convolucionais. Esse tipo de rede neural geralmente é aplicado para analisar imagens visuais. Neste artigo, nós consideraremos a aplicação dessas redes no mercado financeiro.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 55): classe-coleção de indicadores
Neste artigo, continuaremos a desenvolver as classes de objetos-indicadores e suas coleções. Para cada objeto-indicador vamos criar uma descrição e ajustar a classe-coleção para armazenamento sem erros e recuperação de objetos-indicadores a partir da lista-coleção.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 52): natureza multiplataforma de indicadores padrão multiperíodos multissímbolos de buffer único
Neste artigo, consideraremos a criação de um indicador padrão Accumulation/Distribution multissímbolo multiperíodo. Para que os programas escritos para a plataforma MetaTrader 4 desatualizada baseada nesta biblioteca funcionem normalmente ao mudar para o MetaTrader 5, iremos modificar ligeiramente as classes da biblioteca, a nível de indicadores.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 51): indicadores padrão multiperíodos multissímbolos compostos
Neste artigo, vamos completar o desenvolvimento de objetos para indicadores padrão multissímbolos multiperíodos. Usando o indicador padrão Ichimoku Kinko Hyo como exemplo, analisaremos a criação de indicadores personalizados complexos que têm buffers desenhados auxiliares para exibir dados num gráfico.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 50): indicadores padrão multiperíodos multissímbolos com deslocamento
Neste artigo, melhoraremos os métodos da biblioteca para exibir corretamente indicadores padrão multissímbolos e multiperíodos, cujas linhas são exibidas no gráfico do símbolo atual com determinado deslocamento definido nas configurações. Também colocaremos as coisas em ordem nos métodos que permitem trabalhar com indicadores padrão e removeremos o código desnecessário no programa-indicador final para a área da biblioteca.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 49): indicadores padrão multiperíodos multissímbolos multibuffer
Neste artigo, modificaremos as classes da biblioteca para permitir a criação de indicadores padrão multissímbolos e multiperíodos que requerem vários buffers de indicador para exibir seus dados.

Redes neurais de maneira fácil (Parte 2): Treinamento e teste da rede
Neste segundo artigo, nós continuaremos a estudar as redes neurais e nós vamos considerar um exemplo utilizando a nossa classe criada CNet nos Expert Advisors. Nós trabalharemos com dois modelos de rede neural, que apresentam resultados semelhantes tanto em termos de tempo de treinamento quanto de precisão de predição.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 48): indicadores multissímbolos multiperíodos num buffer de uma subjanela
Neste artigo consideraremos um exemplo que mostra como criar indicadores padrão multissímbolos e multiperíodos que usam um buffer de indicador e funcionam numa subjanela do gráfico principal. Prepararemos classes da biblioteca para trabalhar com indicadores padrão que funcionam na janela principal do programa, ou que tenham mais de um buffer para exibir seus dados.


Sistema de notificações de voz de eventos e sinais de negociação
Hoje em dia, os assistentes de voz ocupam um papel proeminente na vida humana, seja um navegador, um mecanismo de busca por voz ou um tradutor. Por isso, neste artigo, tentarei desenvolver um sistema simples e compreensível de notificações de voz para diferentes eventos, condições de mercado ou sinais de sistemas de negociação.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 46): buffers de indicador multiperíodos multissímbolos
No artigo acaberemos de modificar as classes-objetos de buffers de indicador para trabalhar no modo multissímbolo. Dessa maneira, teremos tudo pronto para criar indicadores multissímbolos multiperíodos em nossos programas. Adicionaremos a funcionalidade que falta aos objetos dos buffers calculados, o que nos permitirá criar indicadores multissímbolos e multiperíodos padrão.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 45): buffers de indicador multiperíodo
Neste artigo, começaremos a modificar os objetos-buffers de indicador e a classe da coleção de buffers para trabalhar nos modos multiperíodo e multissímbolo. Veremos o funcionamento dos objetos-buffers para receber e exibir dados de qualquer timeframe no gráfico do símbolo atual.

Aplicação prática de redes neurais no trading. Embarquemos na prática
Este artigo apresenta uma descrição e instruções para o uso prático de módulos de redes neurais (MRN) na plataforma Matlab. Também aborda os principais aspectos para construção de um sistema de negociação usando o MRN. Para realizar uma apresentação concisa deste artigo, tive que modernizá-lo um pouco de forma a combinar várias funções da MRN num programa.


Aplicação prática de redes neurais no trading
O artigo discute os principais pontos para integrar as redes neurais e um terminal de negociação, providenciando criar um robô de negociação robusto.


Conjunto de ferramentas para marcação manual de gráficos e negociação (Parte I). Preparação - Descrição da Estrutura e Classe Auxiliar
Neste artigo, começaremos a ver um conjunto de ferramentas para marcação gráfica usando atalhos de teclado. É bastante conveniente: clicaremos num botão e aparecerá uma linha de tendência, clicaremos noutro e aparecerá um leque de Fibonacci com os parâmetros desejados. Também poderemos alternar timeframes, mudar a ordem das "camadas" de objetos ou remover todos os objetos do gráfico.


Luta pela velocidade: QLUA vs MQL5 - por que o MQL5 é 50 a 600 vezes mais rápido?
Para comparar as linguagens MQL5 e QLUA, escrevemos vários testes que medem a velocidade de execução de operações básicas. Nos testes, usamos um computador com Windows 7 Professional 64 bits, MetaTrader 5 build 1340 e QUIK versão 7.2.0.45.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 44): classe-coleção de objetos de buffers de indicador
Neste artigo, veremos a criação de uma classe-coleção de objetos de buffers de indicador, testaremos tanto as possibilidades de criar qualquer quantidade de buffers para programas-indicadores quanto as de trabalhar com eles (o número máximo de buffers que podem ser criados em indicadores MQL é de 512 buffers).


Como escrever um cliente nativo Twitter para MetaTrader: 2º parte
Vamos implementar o cliente Twitter como uma classe MQL que nos permitirá enviar tweets com imagens. Depois de anexar apenas um arquivo include autônomo, poderemos publicar tweets e colocar nossos gráficos e sinais.


Como escrever um cliente nativo Twitter para MetaTrader 4 e MetaTrader 5 sem usar DLL
Quer receber tweets ou postar seus sinais de negociação no Twitter? Você já não precisará procurar soluções, já que nesta série de artigos, veremos como trabalhar com o Twitter sem usar uma DLL. Juntos implementaremos a Tweeter API usando MQL. No primeiro artigo, começaremos com os recursos de autenticação e autorização da Twitter API.


Trabalhando com séries temporais na biblioteca DoEasy (Parte 43): classes de objetos de buffers de indicador
Neste artigo, veremos a criação de classes de objetos-buffers de indicador como herdeiros de um objeto-buffer abstrato, o que simplifica a declaração e trabalho com buffers de indicadores ao criar programas-indicadores próprios baseados na biblioteca DoEasy.