Artigos com exemplos de como programar na linguagem MQL5

Acesse uma enorme coleção de artigos com códigos de exemplo mostrando como criar indicadores e robôs de negociação para a plataforma MetaTrader na Linguagem MQL5. Os códigos fonte são anexados aos artigos, para que você possa abri-los no MetaEditor, executá-los e ver como os aplicativos funcionam.

Estes artigos serão úteis tanto para aqueles que estão apenas começando a explorar a negociação automatizada e para os traders profissionais com experiência em programação. Eles apresentam não apenas exemplos, mas também contêm novas idéias.

Novo artigo
recente | principal

Gráficos na biblioteca DoEasy (Parte 74): elemento gráfico básico baseado na classe CCanvas

Vamos revisar o conceito de construção de objetos gráficos, que vimos no artigo anterior, e preparar uma classe base para todos os objetos gráficos da biblioteca criados com base na classe CCanvas da

Gráficos na biblioteca DoEasy (Parte 73): objeto-forma de um elemento gráfico

Neste artigo, começamos uma nova seção grande sobre a biblioteca para trabalhar com gráficos. Hoje vamos criar um objeto de estados do mouse, um objeto base de todos os elementos gráficos e uma classe

Outras classes na biblioteca DoEasy (Parte 72): rastreamento e fixação dos parâmetros de objetos-gráficos numa coleção

Neste artigo, vamos finalizar as classes de objetos-gráficos e de sua coleção. Faremos o rastreamento automático das alterações das propriedades dos gráficos e das suas janelas, bem como o

Conselhos de um programador profissional (Parte II): armazenamento e troca de parâmetros entre um EA, scripts e programas externos

Conselhos de um programador profissional sobre métodos, técnicas e ferramentas auxiliares para tornar a programação mais fácil. Hoje falaremos sobre os parâmetros que podem ser restaurados após

Outras classes na biblioteca DoEasy (Parte 71): eventos da coleção de objetos-gráficos

Neste artigo, criaremos uma funcionalidade para rastrear alguns eventos de objetos-gráficos - adição/remoção de gráficos de símbolos, de subjanelas do gráfico, bem como adição/exclusão/mudança de

Outras classes na biblioteca DoEasy (Parte 70): extensão da funcionalidade e atualização automática da coleção de objetos-gráficos

Neste artigo, vamos expandir a funcionalidade dos objetos-gráficos, criaremos a navegação em gráficos, geraremos capturas de tela, salvaremos e aplicaremos modelos aos gráficos. Faremos também uma

Conselhos de um programador profissional (Parte I): Armazenamento, depuração e compilação de códigos Trabalho com projetos e registros

Conselhos de um programador profissional sobre métodos, técnicas e ferramentas auxiliares para tornar a programação mais fácil

Outras classes na biblioteca DoEasy (Parte 69): classe-coleção de objetos-gráficos

Com este artigo, começaremos o desenvolvimento de uma classe-coleção de objetos-gráficos que armazenará uma lista-coleção de objetos-gráficos com suas subjanelas e indicadores, e tornará possível

Redes neurais de maneira fácil (Parte 13): normalização em lote

No artigo anterior, começamos a examinar métodos para melhorar a qualidade do treinamento da rede neural. Neste artigo, proponho continuar este tópico e considerar uma outra abordagem, em particular a

Outras classes na biblioteca DoEasy (Parte 68): classe de objeto-gráfico e classes de objetos-indicadores na janela do gráfico

Neste artigo, continuaremos a desenvolver a classe do objeto-gráfico. Vamos adicionar uma lista de objetos-janelas, onde, por sua vez, estarão disponíveis as listas de indicadores colocados nestas

Outras classes na biblioteca DoEasy (Parte 67): classe de objeto-gráfico

Neste artigo, vamos criar uma classe de um objeto-gráfico (um gráfico de um instrumento de negociação) e modificar a classe-coleção de objetos de sinal mql5 para que cada objeto-sinal armazenado na

Redes Neurais de Maneira Fácil (Parte 12): Dropout

Como a próxima etapa no estudo das redes neurais, eu sugiro considerar os métodos de aumentar a convergência durante o treinamento da rede neural. Existem vários desses métodos. Neste artigo, nós

Outras classes na biblioteca DoEasy (Parte 66): classe-coleção de Sinais MQL5.com

Neste artigo, criaremos uma classe-coleção de sinais - do serviço Sinais MQL5.com - com funções para gerenciar sinais assinados e também modificaremos a classe do objeto-instantâneo do livro de

Trabalhando com preços e sinais na biblioteca DoEasy (Parte 65): coleção de livros de ofertas e classe para trabalhar com sinais MQL5.com

Neste artigo, criaremos uma classe-coleção de livros de ofertas para todos os símbolos e começaremos a desenvolver a funcionalidade para trabalhar com o serviço de sinais MQL5.com - criaremos uma

Técnicas úteis e exóticas para a negociação automatizada

Neste artigo, eu demonstrarei algumas técnicas muito interessantes e úteis para a negociação automatizada. Algumas delas podem ser familiares para você. Eu tentarei cobrir os métodos mais

Trabalhando com preços na biblioteca DoEasy (Parte 64): livro de ofertas, classes do objeto-instantâneo e objeto-série de instantâneos do livro de ofertas

Neste artigo, criaremos duas classes (a do objeto-instantânea do livro de ofertas e a do objeto-série dos instantâneos do livro de ofertas) e testaremos a criação de uma série de dados do livro de

Trabalhando preços na biblioteca DoEasy (Parte 63): livro de ofertas, classe de ordem abstrata do livro de ofertas

Neste artigo, começaremos a desenvolver funcionalidades para trabalhar com o livro de ofertas. Criaremos uma classe de objeto para uma ordem abstrata do livro de ofertas e dos seus herdeiros

Trabalhando com preços na biblioteca DoEasy (Parte 62): atualização em tempo real da série de ticks, preparação para trabalhar com o livro de ofertas

Neste artigo, atualizaremos em tempo real da coleção de dados de ticks e prepararemos a classe do objeto-símbolo para trabalhar com o livro de ofertas, cujo funcionamento abordaremos no próximo

Redes neurais de maneira fácil (Parte 10): Atenção Multi-Cabeça

Nós já consideramos anteriormente o mecanismo de self-attention (autoatenção) em redes neurais. Na prática, as arquiteturas de rede neural modernas usam várias threads de self-attention paralelas para

Trabalhando com preços na biblioteca DoEasy (Parte 61): coleção de séries de ticks para símbolos

Visto que diferentes símbolos podem ser usados durante a operação do programa, é necessário criar uma lista própria para cada um deles. Hoje vamos combinar essas listas numa coleção de dados de ticks

Trabalhando com preços na biblioteca DoEasy (Parte 60): lista-série de dados de dados de tick do símbolo

Neste artigo, criaremos uma lista para armazenar dados de tick de um símbolo e verificaremos tal criação e respectiva recepção de dados a partir dela no EA. Essas listas de dados de tick -

Trabalhando com séries temporais na biblioteca DoEasy (Parte 59): objeto para armazenar dados de um tick

Com este artigo, vamos começar a criar a funcionalidade de biblioteca para trabalhar com dados de preços. Hoje vamos criar uma classe de objeto que armazenará todos os dados de preços recebidos no

Redes Neurais de Maneira Fácil (Parte 9): Documentação do trabalho

Nós já percorremos um longo caminho e o código em nossa biblioteca está se tornando cada vez maior. Isso torna difícil controlar todas as conexões e dependências. Portanto, eu sugiro criar uma

Usando planilhas para construir estratégias de negociação

O artigo descreve os princípios básicos e abordagens que permitem analisar qualquer estratégia usando planilhas - Excel, Calc, Google. Os resultados também são comparados com os do testador do

Redes Neurais de Maneira Fácil (Parte 8): Mecanismos de Atenção

Nos artigos anteriores, nós já testamos várias opções para organizar as redes neurais. Nós também estudamos as redes convolucionais emprestadas dos algoritmos de processamento de imagem. Neste artigo

Trabalhando com séries temporais na biblioteca DoEasy (Parte 58): séries temporais de dados de buffers de indicadores

No final do tópico sobre trabalho com séries temporais, realizaremos o armazenamento, a pesquisa e a classificação dos dados armazenados em buffers de indicadores, o que nos permitirá realizar

WebSocket para MetaTrader 5

Antes do aparecimento das funções de rede na API MQL5 atualizada, os aplicativos MetaTrader eram limitados em sua capacidade de se conectar e interagir com serviços baseados no protocolo WebSocket

Trabalhando com séries temporais na biblioteca DoEasy (Parte 57): objeto de dados do buffer do indicador

Neste artigo, veremos um objeto que conterá todos os dados de um buffer de um indicador. Tais objetos serão necessários para armazenar dados seriais de buffers de indicadores, e com a ajuda dos quais

Trabalhando com séries temporais na biblioteca DoEasy (Parte 56): objeto de indicador personalizado, obtenção de dados a partir de objetos-indicadores numa coleção

Neste artigo, veremos a criação de um objeto de indicador personalizado para ser usado em Expert Advisors. Vamos modificar ligeiramente as classes da biblioteca e escrever métodos para receber dados

Aplicação prática de redes neurais no trading. Python (Parte I)

Neste artigo, analisaremos passo a passo a implementação de um sistema de negociação baseado na programação de redes neurais profundas em Python. Para isso, usaremos a biblioteca de aprendizado de

Perceptron Multicamadas e o Algoritmo Backpropagation

Recentemente, ao aumentar a popularidade desses métodos, tantas bibliotecas foram desenvolvidas em Matlab, R, Python, C++, e etc, que recebem o conjunto de treinamento como entrada e constroem

Redes neurais de Maneira Fácil (Parte 6): Experimentos com a taxa de aprendizado da rede neural

Anteriormente, nós consideramos vários tipos de redes neurais junto com suas implementações. Em todos os casos, as redes neurais foram treinadas usando o método gradiente descendente, para o qual nós

Como ganhar US$ 1 000 000 por meio do trading algorítmico? Nos serviços MQL5.com!

Cada trader chega ao mercado com o objetivo de ganhar seu primeiro milhão de dólares. Como ele pode fazer isso sem muito risco e sem capital inicial? Os serviços MQL5 facilitam isso para

Redes Neurais de Maneira Fácil (Parte 3): Redes Convolucionais

Como uma continuação do tópico das redes neurais, eu proponho ao leitor a análise das redes neurais convolucionais. Esse tipo de rede neural geralmente é aplicado para analisar imagens visuais. Neste

Trabalhando com séries temporais na biblioteca DoEasy (Parte 55): classe-coleção de indicadores

Neste artigo, continuaremos a desenvolver as classes de objetos-indicadores e suas coleções. Para cada objeto-indicador vamos criar uma descrição e ajustar a classe-coleção para armazenamento sem

Trabalhando com séries temporais na biblioteca DoEasy (Parte 52): natureza multiplataforma de indicadores padrão multiperíodos multissímbolos de buffer único

Neste artigo, consideraremos a criação de um indicador padrão Accumulation/Distribution multissímbolo multiperíodo. Para que os programas escritos para a plataforma MetaTrader 4 desatualizada baseada

Trabalhando com séries temporais na biblioteca DoEasy (Parte 51): indicadores padrão multiperíodos multissímbolos compostos

Neste artigo, vamos completar o desenvolvimento de objetos para indicadores padrão multissímbolos multiperíodos. Usando o indicador padrão Ichimoku Kinko Hyo como exemplo, analisaremos a criação de

Trabalhando com séries temporais na biblioteca DoEasy (Parte 50): indicadores padrão multiperíodos multissímbolos com deslocamento

Neste artigo, melhoraremos os métodos da biblioteca para exibir corretamente indicadores padrão multissímbolos e multiperíodos, cujas linhas são exibidas no gráfico do símbolo atual com determinado

Trabalhando com séries temporais na biblioteca DoEasy (Parte 49): indicadores padrão multiperíodos multissímbolos multibuffer

Neste artigo, modificaremos as classes da biblioteca para permitir a criação de indicadores padrão multissímbolos e multiperíodos que requerem vários buffers de indicador para exibir seus dados

Redes neurais de maneira fácil (Parte 2): Treinamento e teste da rede

Neste segundo artigo, nós continuaremos a estudar as redes neurais e nós vamos considerar um exemplo utilizando a nossa classe criada CNet nos Expert Advisors. Nós trabalharemos com dois modelos de