
Redes neurais de maneira fácil (Parte 65): aprendizado supervisionado ponderado por distância (DWSL)
Neste artigo, convido você a conhecer um algoritmo interessante que se situa na interseção entre os métodos de aprendizado supervisionado e de reforço.

Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)
As últimas 2 partes foram dedicadas ao método transformador de decisões (DT), que modela sequências de ações no contexto de um modelo autorregressivo de recompensas desejadas. Neste artigo, vamos considerar outro algoritmo de otimização deste método.

DoEasy. Controles (Parte 17): Recorte de seções invisíveis de objetos, objetos-botões WinForms auxiliares com setas
Neste artigo vamos criar funcionalidade para esconder seções de objetos que ultrapassam as margens de seu contêiner e vamos elaborar objetos-botões auxiliares com setas para usá-los como parte de outros objetos WinForms.

Simulação de mercado (Parte 12): Sockets (VI)
Neste artigo, vamos ver como resolver algumas questões e ver alguns problemas que temos ao usar código feito em Python dentro de outros programas. No caso o que mostrarei aqui, é um típico problema que existe, quando você vai usar o Excel junto com o MetaTrader 5. Mas para fazer esta comunicação estaremos usando o Python. Porém existe um pequeno problema nesta implementação. Não em todos os casos, mas em alguns casos específicos e quando o problema ocorre você tem que entender por que ele ocorre. Neste artigo iniciarei a explicação de como resolver tal coisa.

Anotação de dados na análise de série temporal (Parte 3): Exemplo de uso de anotação de dados
Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!

Aprendendo MQL5 do iniciante ao profissional (Parte III): Tipos de dados complexos e arquivos inclusos
O artigo é o terceiro de uma série sobre os aspectos fundamentais da programação em MQL5. Aqui são descritos tipos de dados complexos que não foram abordados no artigo anterior, incluindo estruturas, uniões, classes e o tipo de dado "função". Também é explicado como adicionar modularidade ao programa utilizando a diretiva de pré-processador #include.

Desenvolvendo um EA multimoeda (Parte 3): Revisão da arquitetura
Nós já avançamos um pouco no desenvolvimento de um EA multimoeda com várias estratégias funcionando em paralelo. Com base na experiência acumulada, vamos revisar a arquitetura da nossa solução e tentar melhorá-la, antes que avancemos muito.

Algoritmos de otimização populacionais: algoritmo de baleias (Whale Optimization Algorithm, WOA)
O algoritmo de otimização de baleias (WOA) é um algoritmo metaheurístico inspirado pelo comportamento e pelas estratégias de caça das baleias-jubarte. A ideia principal do WOA é imitar o chamado método de alimentação "rede de bolhas", em que as baleias criam bolhas ao redor de suas presas para depois atacá-las em um movimento espiral.

Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa
A pesquisa do ambiente em tarefas de aprendizado por reforço é um problema atual. Anteriormente, já examinamos algumas abordagens. E hoje, eu proponho que nos familiarizemos com mais um método, baseado na maximização da norma nuclear. Ele permite que os agentes destaquem estados do ambiente com alto grau de novidade e diversidade.

Ciência de Dados e Aprendizado de Máquina (Parte 15): SVM — uma ferramenta útil no arsenal do trader
Neste artigo, exploraremos o papel que o método de máquinas de vetores de suporte (<i>support vector machines</i>, SVM) desempenha na formação do futuro do trading. Este artigo pode ser visto como um guia detalhado que explica como usar o SVM para melhorar estratégias de trading, otimizar a tomada de decisões e descobrir novas oportunidades nos mercados financeiros. Você mergulhará no mundo do SVM através de aplicações reais, instruções passo a passo e avaliações de especialistas. Talvez essa ferramenta indispensável o ajude a entender as complexidades do trading moderno. De qualquer forma, o SVM se tornará uma ferramenta muito útil no arsenal de cada trader.

Redes neurais em trading: Aumentando a eficiência do Transformer por meio da redução da nitidez (SAMformer)
O treinamento de modelos Transformer exige grandes volumes de dados e muitas vezes é dificultado pela fraca capacidade dos modelos de generalizar em amostras pequenas. O framework SAMformer ajuda a resolver esse problema ao evitar mínimos locais ruins. E aumenta a eficiência dos modelos mesmo em conjuntos de treinamento limitados.

Algoritmo de otimização por reações químicas — Chemical Reaction Optimisation, CRO (Parte II): Montagem e resultados
Na segunda parte do artigo, reuniremos os operadores químicos em um único algoritmo e apresentaremos uma análise detalhada de seus resultados. Descobriremos como o método de otimização por reações químicas (CRO) superou o desafio de resolver problemas complexos em funções de teste.

DoEasy. Controles (Parte 20): Objeto WinForms SplitContainer
Hoje começaremos a desenvolver o controle SplitContainer a partir da caixa de ferramentas do MS Visual Studio. Este elemento consiste em dois painéis separados por um separador móvel vertical ou horizontal.

Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)
O aprendizado contrastivo é um método de aprendizado de representação sem supervisão. Seu objetivo é ensinar o modelo a identificar semelhanças e diferenças nos conjuntos de dados. Neste artigo, discutiremos o uso de abordagens de aprendizado contrastivo para explorar diferentes habilidades do Ator.

Redes neurais de maneira fácil (Parte 52): exploração com otimização e correção de distribuição
À medida que a política do Ator se afasta cada vez mais dos exemplos armazenados no buffer de reprodução de experiências, a eficácia do treinamento do modelo, baseado nesse buffer, diminui. Neste artigo, examinamos um algoritmo que aumenta a eficácia do uso de amostras em algoritmos de aprendizado por reforço.

DoEasy. Controles (Parte 18): Preparando a funcionalidade para rolagem de guias no TabControl
Neste artigo colocaremos os botões de controle de rolagem de cabeçalhos no objeto WinForms TabControl caso a fileira de cabeçalhos não se ajuste ao tamanho do controle, e faremos o deslocamento da linha de cabeçalho quando clicamos no cabeçalho de uma guia cortada.

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 08): Perceptrons
Os perceptrons, redes com uma única camada oculta, podem ser um bom suporte para aqueles familiarizados com os fundamentos do trading automático e que desejam mergulhar nas redes neurais. Vamos examinar passo a passo como eles podem ser implementados no conjunto de classes de sinais, que faz parte das classes do Assistente MQL5 para EAs.

Desenvolvimento de um Cliente MQTT para o MetaTrader 5: metodologia TDD (Parte 3)
Este artigo faz parte de uma série que descreve as etapas do desenvolvimento de um cliente MQL5 nativo para o protocolo MQTT. Nesta parte, descrevemos em detalhes como aplicar o princípio do desenvolvimento orientado por testes para implementar a troca de pacotes CONNECT/CONNACK. Ao final desta etapa, nosso cliente DEVE ser capaz de agir apropriadamente ao trabalhar com todos os possíveis resultados do servidor ao tentar se conectar.

Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro
Neste artigo, apresentamos a implementação de um algoritmo de seleção de características descrito em um artigo acadêmico intitulado "FREL: Um algoritmo estável de seleção de características", chamado de Ponderação de Características como Aprendizado Baseado em Energia Regularizada.

Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas
Continuamos a examinar funtores e como eles podem ser implementados usando redes neurais artificiais. Vamos temporariamente deixar de lado a abordagem que incluía a previsão de volatilidade, e tentar implementar nossa própria classe de sinais para estabelecer sinais para entrar e sair de uma posição.

Padrões de projeto no MQL5 (Parte 3): Padrões comportamentais 1
Neste novo artigo da série dedicada a padrões de projeto, exploraremos os padrões comportamentais para entender como criar métodos eficazes de interação entre os objetos criados. Ao projetar esses padrões de comportamento, poderemos entender como desenvolver software reutilizável, expansível e testável.

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 7): Refinando nosso modelo para o desenvolvimento de EA
Neste artigo, vamos nos aprofundar na preparação detalhada do nosso indicador para o desenvolvimento de Expert Advisor (EA). Nossa discussão abrangerá refinamentos adicionais na versão atual do indicador para melhorar sua precisão e funcionalidade. Além disso, vamos introduzir novos recursos que marcam pontos de saída, abordando uma limitação da versão anterior, que identificava apenas os pontos de entrada.

Rede neural na prática: Pseudo Inversa (I)
Aqui, vamos começar a ver como podermos implementar, usando MQL5 puro, o cálculo de pseudo inversa. Apesar do código que será visto, será de fato bem mais complicado, para os iniciantes, do que eu de fato gostaria de apresentar. Ainda estou pensando em como o explicar de forma simples. Veja isto como uma oportunidade de estudar um o código pouco comum. Então vá com calma. Sem pressa e correria. Mesmo que ele não vise ser eficiente e de rápida execução. O objetivo é ser o mais didático possível.

Elementos da análise correlacional em MQL5: Critério de independência qui-quadrado de Pearson e relação de correlação
O artigo aborda as ferramentas clássicas da análise correlacional. São apresentadas as bases teóricas breves, bem como a implementação prática do critério de independência qui-quadrado de Pearson e o coeficiente de relação de correlação.

Construindo um Modelo de Restrição de Tendência com Candlesticks (Parte 5): Sistema de Notificação (Parte I)
Dividiremos o código principal do MQL5 em trechos específicos para ilustrar a integração do Telegram e WhatsApp para receber notificações de sinais do indicador de Restrição de Tendência que estamos criando nesta série de artigos. Isso ajudará traders, tanto iniciantes quanto desenvolvedores experientes, a compreender o conceito com mais facilidade. Primeiro, abordaremos a configuração do MetaTrader 5 para notificações e sua importância para o usuário. Isso ajudará os desenvolvedores a tomarem nota antecipadamente para aplicar posteriormente em seus sistemas.

DoEasy. Controles (Parte 9): Reorganizando métodos de objetos WinForms, controles "RadioButton" e "Button"
No artigo de hoje, organizaremos os nomes dos métodos das classes dos objetos WinForms e criaremos os objetos WinForms Button e RadioButton.

Do básico ao intermediário: Comando SWITCH
Neste artigo iremos aprender como utilizar o comando SWITCH em sua forma mais simples e básica. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

EA MQL5 integrado ao Telegram (Parte 2): Envio de sinais do MQL5 para o Telegram
Nesta parte do artigo, vamos criar um EA MQL5 integrado ao Telegram que envia sinais de cruzamento de médias móveis para o mensageiro. Descreveremos detalhadamente o processo de geração de sinais de negociação com base nesses cruzamentos, implementaremos o código necessário em MQL5 e garantiremos uma integração contínua. Como resultado, teremos um sistema que envia alertas de negociação em tempo real diretamente para um grupo no Telegram.

Introdução ao MQL5 (Parte 6): Um Guia para Iniciantes sobre Funções de Array em MQL5
Embarque na próxima fase da nossa jornada com MQL5. Neste artigo esclarecedor e amigável para iniciantes, exploraremos as funções restantes de arrays, desmistificando conceitos complexos para capacitá-lo a criar estratégias de negociação eficientes. Discutiremos as funções ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrayRemove, ArraySwap, ArrayReverse e ArraySort. Eleve sua expertise em negociação algorítmica com essas funções essenciais de arrays. Junte-se a nós no caminho para a maestria em MQL5!

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 5): Sistema de Notificação (Parte II)
Hoje, estamos discutindo uma integração funcional do Telegram para notificações do Indicador MetaTrader 5 usando o poder do MQL5, em parceria com Python e a API do Bot do Telegram. Explicaremos tudo em detalhes para que ninguém perca nenhum ponto. Ao final deste projeto, você terá adquirido conhecimentos valiosos para aplicar em seus projetos.

Desenvolvendo um sistema de Replay (Parte 78): Um novo Chart Trade (V)
Neste artigo, veremos como deveremos implementar a parte do receptor. Ou seja, aqui implementaremos uma versão do Expert Advisor, apenas para testar e aprender como a comunicação via protocolo funciona. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Desenvolvimento de robô em Python e MQL5 (Parte 3): Implementação do algoritmo de negociação baseado em modelo
Continuamos o ciclo de artigos sobre a criação de um robô de negociação em Python e MQL5. Hoje, vamos abordar a tarefa de desenvolver um algoritmo de negociação em Python.

Algoritmos de otimização populacionais: Algoritmo de pesquisa gravitacional (GSA)
O GSA é um algoritmo populacional inspirado na natureza inanimada. Sua capacidade de modelar com alta precisão a interação entre corpos físicos, através da lei da gravidade de Newton incorporada no algoritmo, permite contemplar um espetáculo fascinante de dança entre sistemas planetários e aglomerados galácticos, representado de forma impressionante em animações. Hoje vamos discutir um dos algoritmos de otimização mais interessantes e originais. Um simulador de movimento de objetos espaciais está incluído.

Teoria das Categorias em MQL5 (Parte 20): autoatenção e transformador
Vamos nos afastar um pouco de nossos tópicos mais comuns e analisar uma parte do algoritmo do ChatGPT. Ele possui algumas semelhanças ou conceitos emprestados das transformações naturais? Vamos tentar responder a essas e outras perguntas usando nosso código no formato de classe de sinal.

Algoritmos de otimização populacional: Busca em sistema carregado (Charged System Search, CSS)
Neste artigo, vamos explorar outro algoritmo de otimização inspirado pela natureza inanimada, a busca em sistema carregado (CSS). O objetivo deste artigo é apresentar um novo algoritmo de otimização baseado nos princípios da física e mecânica.

Desenvolvendo um EA multimoeda (Parte 2): Transição para posições virtuais de estratégias de trading
Vamos continuar a desenvolver o EA multimoeda com várias estratégias funcionando paralelamente. Tentaremos transferir todo o trabalho relacionado à abertura de posições a mercado do nível das estratégias para o nível do expert que gerencia as estratégias. As próprias estratégias irão negociar apenas virtualmente, sem abrir posições a mercado.

DoEasy. Funções de serviço (Parte 2): Padrão "Barra Interna"
Neste artigo, continuaremos a explorar os padrões de preço na biblioteca DoEasy. Vamos desenvolver a classe do padrão "Barra Interna" das formações Price Action.

Simulação de mercado (Parte 18): Iniciando o SQL (I)
Não importa se vamos usar um ou outro programa de SQL. Seja MySQL, SQL Server, SQLite, OpenSQL ou qualquer outro. Todos tem algo em comum entre si. Este algo em comum é a linguagem SQL. Pois bem, mesmo que você não venha a usar de fato uma Workbench, poderá fazer manipulações ou trabalhar com um banco de dados diretamente no MetaEditor ou via MQL5. Isto pensando em fazer as coisas no MetaTrader 5. Mas para de fato conseguir fazer as coisas assim, você precisará de algum conhecimento sobre SQL. Então aqui vamos aprender pelo menos o básico.

DoEasy. Controles (Parte 11): Objetos WinForms - grupos, objeto WinForms CheckedListBox
Neste artigo, consideraremos como agrupar objetos WinForms e criar um objeto-lista de objetos CheckBox.

Indicador Customizado: Traçar os Pontos de Entradas Parciais em contas Netting
Nesse artigo, veremos uma forma interessante e diferente de construir um indicador em MQL5. Ao invés de focar em uma tendência ou padrão gráfico, será no gerenciamento de nossas próprias posições, nas entradas e saídas parciais. Usaremos intensivamente arrays dinâmicos e algumas funções de negociação (Trade) relacionadas a histórico de transações e a posições abertas, naturalmente, para indicar no gráfico onde ocorreram essas negociações.