Artigos sobre programação nas linguagens MQL4 e MQL5

icon

Leia os artigos publicados aqui para aprender MQL5, a linguagem das estratégias de negociação. A maioria desses artigos foi escrita por vocês, membros da MQL5.community. Todos eles estão divididos em categorias para encontrar respostas rápidas relacionadas a aspectos específicos da programação: "Integração", "Testador", "Estratégias de negociação" e muito mais.

Acompanhe as novas publicações e participe de suas discussões no Fórum!

Novo artigo
recentes | melhores
preview
Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading

No EA em desenvolvimento, já temos um mecanismo de controle de rebaixamento implementado. No entanto, ele tem uma natureza probabilística, pois se baseia nos resultados de testes com dados históricos de preços. Assim, o rebaixamento, embora com pequena probabilidade, às vezes pode exceder os valores máximos esperados. Vamos tentar adicionar um mecanismo que garanta a manutenção de um nível de rebaixamento predefinido.
preview
Do básico ao intermediário: Comandos BREAK e CONTINUE

Do básico ao intermediário: Comandos BREAK e CONTINUE

Neste artigo veremos como usar os comando RETURN, BREAK e CONTINUE dentro de um laço. Entender o que cada um destes comandos faz no fluxo de execução de um laço é algo muito importante, para que você consiga trabalhar com aplicações mais elaboradas. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Inferência causal em problemas de classificação de séries temporais

Inferência causal em problemas de classificação de séries temporais

Neste artigo, examinaremos a teoria da inferência causal usando aprendizado de máquina, bem como a implementação de uma abordagem personalizada em Python. A inferência causal e o pensamento causal têm suas raízes na filosofia e psicologia e desempenham um papel importante na nossa compreensão da realidade.
preview
Simplificando a negociação com base em notícias (Parte 2): Gerenciando riscos

Simplificando a negociação com base em notícias (Parte 2): Gerenciando riscos

Neste artigo, adicionaremos herança ao código anterior e ao novo. Implementaremos uma nova estrutura de banco de dados para garantir um bom desempenho. Além disso, criaremos uma classe de gerenciamento de risco para calcular volumes.
preview
Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas

Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas

Continuamos a examinar funtores e como eles podem ser implementados usando redes neurais artificiais. Vamos temporariamente deixar de lado a abordagem que incluía a previsão de volatilidade, e tentar implementar nossa própria classe de sinais para estabelecer sinais para entrar e sair de uma posição.
preview
Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

O aprendizado contrastivo é um método de aprendizado de representação sem supervisão. Seu objetivo é ensinar o modelo a identificar semelhanças e diferenças nos conjuntos de dados. Neste artigo, discutiremos o uso de abordagens de aprendizado contrastivo para explorar diferentes habilidades do Ator.
preview
Algoritmos de otimização populacionais: Algoritmo de evolução da mente (Mind Evolutionary Computation, MEC)

Algoritmos de otimização populacionais: Algoritmo de evolução da mente (Mind Evolutionary Computation, MEC)

Este artigo discute um algoritmo da família MEC, denominado algoritmo simples de evolução da mente (Simple MEC, SMEC). O algoritmo se destaca pela beleza da ideia subjacente e pela simplicidade de implementação.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis

Médias Móveis são um indicador muito comum, usado e compreendido pela maioria dos traders. Exploramos possíveis casos de uso que podem não ser tão comuns dentro dos Expert Advisors montados no MQL5 Wizard.
preview
Do básico ao intermediário: Sobrecarga

Do básico ao intermediário: Sobrecarga

Este talvez será o artigo mais confuso para você iniciante. Já que aqui mostrarei que nem sempre, teremos em um mesmo código, todas funções e procedimentos com nomes exclusivos. Podemos sim ter funções e procedimentos com um mesmo nome e isto é conhecido como sobrecarga. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

A pesquisa do ambiente em tarefas de aprendizado por reforço é um problema atual. Anteriormente, já examinamos algumas abordagens. E hoje, eu proponho que nos familiarizemos com mais um método, baseado na maximização da norma nuclear. Ele permite que os agentes destaquem estados do ambiente com alto grau de novidade e diversidade.
preview
Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Neste artigo, continuaremos a falar sobre métodos de coleta de dados em uma amostra de treinamento. É claro que o processo de aprendizado requer constante interação com o ambiente. Mas as situações podem variar.
preview
Agrupamento de séries temporais na inferência causal

Agrupamento de séries temporais na inferência causal

Os algoritmos de agrupamento em aprendizado de máquina são ferramentas importantes de aprendizado não supervisionado que permitem dividir os dados brutos em grupos com características semelhantes. Com esses grupos, é possível, por exemplo, realizar análise de mercado para um cluster específico, identificar os clusters mais resilientes em novos conjuntos de dados e também realizar inferências causais. Este artigo apresenta um método original para o agrupamento de séries temporais, utilizando a linguagem Python.
preview
Desenvolvendo um EA multimoeda (Parte 18): Automação da seleção de grupos considerando o período forward

Desenvolvendo um EA multimoeda (Parte 18): Automação da seleção de grupos considerando o período forward

Continuaremos automatizando etapas que anteriormente realizávamos manualmente. Desta vez, voltaremos à automação da segunda etapa, ou seja, a escolha do grupo ideal de instâncias individuais de estratégias de negociação, complementada pela capacidade de considerar os resultados dessas instâncias no período forward.
preview
DoEasy. Controles (Parte 28): Estilos de barra no controle ProgressBar

DoEasy. Controles (Parte 28): Estilos de barra no controle ProgressBar

Neste artigo veremos estilos de exibição e texto descritivo para o controle ProgressBar.
preview
Do básico ao intermediário: Indicador (I)

Do básico ao intermediário: Indicador (I)

Neste artigo criaremos o nosso primeiro indicador totalmente prático e funcional. O objetivo aqui, não é e não será mostrar como se cria de fato uma aplicação. Mas ajudar a você, meu caro leitor, a entender como você pode por conta própria, desenvolver suas próprias ideias. As colocando em prática, de forma segura, simples e prática.
preview
Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Apresento o framework adaptativo multiagente MASA, que une aprendizado por reforço e estratégias adaptativas, oferecendo um equilíbrio harmonioso entre rentabilidade e controle de riscos em condições de mercado turbulentas.
preview
Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.
preview
Experiência no desenvolvimento de estratégias de negociação

Experiência no desenvolvimento de estratégias de negociação

Neste artigo, proponho tentarmos desenvolver nossa própria estratégia de negociação. Uma estratégia de negociação deve ser construída com base em uma determinada vantagem estatística. E tal vantagem deve ser duradoura.
preview
Aprendendo MQL5 do iniciante ao profissional (Parte IV): Sobre Arrays, Funções e Variáveis Globais do Terminal

Aprendendo MQL5 do iniciante ao profissional (Parte IV): Sobre Arrays, Funções e Variáveis Globais do Terminal

Este artigo é uma continuação do ciclo para iniciantes. Ele descreve em detalhes arrays de dados, a interação entre dados e funções, bem como variáveis globais do terminal que permitem a troca de dados entre diferentes programas MQL5.
preview
Algoritmo de Otimização Aritmética (AOA): O caminho do AOA até o SOA (Simple Optimization Algorithm)

Algoritmo de Otimização Aritmética (AOA): O caminho do AOA até o SOA (Simple Optimization Algorithm)

Neste artigo, apresentamos o Algoritmo de Otimização Aritmética (Arithmetic Optimization Algorithm, AOA), que se baseia em operações aritméticas simples: adição, subtração, multiplicação e divisão. Essas operações matemáticas básicas são fundamentais para a busca de soluções ótimas em diversas tarefas.
preview
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (StockFormer)

Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (StockFormer)

Apresentamos o sistema de negociação híbrido StockFormer, que combina codificação preditiva e algoritmos de aprendizado por reforço (RL). O framework utiliza 3 ramos Transformer com mecanismo integrado Diversified Multi-Head Attention (DMH-Attn), que melhora o módulo de atenção padrão com um bloco Feed-Forward multicabeça, permitindo capturar padrões de séries temporais em diferentes subespaços.
preview
Anotação de dados na análise de série temporal (Parte 4): Decomposição da interpretabilidade usando anotação de dados

Anotação de dados na análise de série temporal (Parte 4): Decomposição da interpretabilidade usando anotação de dados

Esta série de artigos apresenta várias técnicas destinadas a rotular séries temporais, técnicas essas que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A rotulação de dados (ou anotação de dados) direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, melhorar a precisão do modelo e até mesmo ajudar o modelo a dar um salto qualitativo!
preview
Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

No mundo acelerado dos mercados financeiros, separar sinais significativos do ruído é crucial para o sucesso nas operações de trading. Ao empregar arquiteturas sofisticadas de redes neurais, os autoencoders se destacam ao descobrir padrões ocultos dentro dos dados de mercado, transformando entradas ruidosas em insights acionáveis. Neste artigo, exploramos como os autoencoders estão revolucionando as práticas de trading, oferecendo aos traders uma ferramenta poderosa para melhorar a tomada de decisões e ganhar uma vantagem competitiva nos mercados dinâmicos de hoje.
preview
Construa Consultores Especialistas Autossustentáveis com MQL5 e Python

Construa Consultores Especialistas Autossustentáveis com MQL5 e Python

Neste artigo, discutiremos como podemos construir Consultores Especialistas capazes de selecionar e mudar autonomamente as estratégias de negociação com base nas condições prevalentes do mercado. Vamos aprender sobre Cadeias de Markov e como elas podem ser úteis para nós, como traders algorítmicos.
preview
ADAM Populacional (estimativa adaptativa de momentos)

ADAM Populacional (estimativa adaptativa de momentos)

Este artigo apresenta a transformação do conhecido e popular método de otimização por gradiente ADAM em um algoritmo populacional e sua modificação com a introdução de indivíduos híbridos. A nova abordagem permite criar agentes que combinam elementos de soluções bem-sucedidas usando uma distribuição probabilística. A principal inovação é a formação de indivíduos híbridos populacionais, que acumulam de forma adaptativa informações das soluções mais promissoras, aumentando a eficácia da busca em espaços multidimensionais complexos.
preview
DoEasy. Controles (Parte 30): Animando o controle "ScrollBar"

DoEasy. Controles (Parte 30): Animando o controle "ScrollBar"

Neste artigo continuaremos a desenvolver o controle ScrollBar e começaremos a fazer a funcionalidade de interação com o mouse. Além disso, vamos expandir as listas de bandeiras de status e eventos com o mouse.
preview
Teoria das Categorias em MQL5 (Parte 20): autoatenção e transformador

Teoria das Categorias em MQL5 (Parte 20): autoatenção e transformador

Vamos nos afastar um pouco de nossos tópicos mais comuns e analisar uma parte do algoritmo do ChatGPT. Ele possui algumas semelhanças ou conceitos emprestados das transformações naturais? Vamos tentar responder a essas e outras perguntas usando nosso código no formato de classe de sinal.
preview
DoEasy. Controles (Parte 10): Objetos WinForms, dando vida à interface

DoEasy. Controles (Parte 10): Objetos WinForms, dando vida à interface

Chegou a hora de dar vida à interface gráfica e criar funcionalidades para a interação de objetos com o usuário e outros objetos. E para que objetos mais complexos funcionem corretamente, já precisamos que os objetos interajam entre si e interajam com o usuário.
preview
Balanceando riscos ao negociar múltiplos instrumentos simultaneamente

Balanceando riscos ao negociar múltiplos instrumentos simultaneamente

Este artigo permitirá que um iniciante escreva uma implementação de um script do zero para balancear riscos ao negociar múltiplos instrumentos simultaneamente. Além disso, pode dar aos usuários experientes novas ideias para implementar suas soluções em relação às opções propostas neste artigo.
preview
DoEasy. Controles (Parte 11): Objetos WinForms - grupos, objeto WinForms CheckedListBox

DoEasy. Controles (Parte 11): Objetos WinForms - grupos, objeto WinForms CheckedListBox

Neste artigo, consideraremos como agrupar objetos WinForms e criar um objeto-lista de objetos CheckBox.
preview
Técnicas do MQL5 Wizard que você deve conhecer (Parte 44): Indicador técnico Average True Range (ATR)

Técnicas do MQL5 Wizard que você deve conhecer (Parte 44): Indicador técnico Average True Range (ATR)

O oscilador ATR é um indicador muito popular para atuar como um proxy de volatilidade, especialmente nos mercados de forex onde os dados de volume são escassos. Nós o examinamos com base em padrões, assim como fizemos com indicadores anteriores, e compartilhamos estratégias e relatórios de testes graças às classes da biblioteca MQL5 wizard e sua montagem.
preview
Simulação de mercado (Parte 11): Sockets (V)

Simulação de mercado (Parte 11): Sockets (V)

Vamos começar a implementar a comunicação entre o Excel e o MetaTrader 5. Mas antes é preciso entender algumas coisas importantes. Isto para que não venha a ficar coçando a cabeça tentando entender por que as coisas funcionam ou não. Mas antes que você venha a torcer o nariz para a integração entre o Python e o Excel. Vamos ver como podemos usar o xlwings, a fim de poder controlar de alguma forma o MetaTrader 5. Isto através do Excel. O que irei mostrar aqui será como foco principal a didática. Não ache que podemos fazer apenas o que mostrarei.
preview
Desenvolvendo um EA multimoeda (Parte 19): Criando etapas implementadas em Python

Desenvolvendo um EA multimoeda (Parte 19): Criando etapas implementadas em Python

Até agora, analisamos a automação da execução de procedimentos sequenciais de otimização de EAs exclusivamente no testador de estratégias padrão. Mas o que fazer se, entre essas execuções, quisermos processar alguns dados já obtidos por outros meios? Vamos tentar adicionar a possibilidade de criar novas etapas de otimização, executadas por programas escritos em Python.
preview
Do básico ao intermediário: Array e Strings (I)

Do básico ao intermediário: Array e Strings (I)

Neste artigo, começaremos a ver alguns tipos especiais de dados. Vamos começar definindo o que seria uma string e como usar alguns procedimentos básicos. Isto para que possamos começar a trabalhar com este tipo que é bem curioso. Apesar de em alguns momentos ser um tanto confuso para iniciantes. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
preview
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (Conclusão)

Damos continuidade à análise do StockFormer, um sistema híbrido de negociação que combina codificação preditiva e algoritmos de aprendizado por reforço para análise de séries temporais financeiras. O sistema se baseia em três ramificações Transformer com o mecanismo Diversified Multi-Head Attention (DMH-Attn), que permite identificar padrões complexos e interrelações entre ativos. Anteriormente, aprendemos os aspectos teóricos do framework e implementamos os mecanismos do DMH-Attn; hoje vamos abordar a arquitetura dos modelos e seu treinamento.
preview
Gerente de risco profissional remoto para Forex em Python

Gerente de risco profissional remoto para Forex em Python

Criamos um gerente de risco profissional remoto para Forex em Python e o implantamos em um servidor, passo a passo. Ao longo do artigo, veremos como gerenciar riscos no Forex de maneira programada e como evitar a perda total do depósito.
preview
Desenvolvendo um sistema de Replay (Parte 73): Uma comunicação inusitada (II)

Desenvolvendo um sistema de Replay (Parte 73): Uma comunicação inusitada (II)

Neste artigo, veremos como transferir informações em tempo real entre o indicador e o serviço, entender por que podem surgir problemas ao modificar o tempo gráfico e como resolvê-los corretamente. Como bônus, você terá acesso à última versão da aplicação de replay/simulador. O conteúdo é exclusivamente didático e não deve ser considerado como uma aplicação para outros fins.
preview
Teoria das Categorias em MQL5 (Parte 18): Quadrado de naturalidade

Teoria das Categorias em MQL5 (Parte 18): Quadrado de naturalidade

Este artigo dá continuidade à série sobre a teoria das categorias, abordando as transformações naturais, que são um elemento fundamental da teoria. Vamos examinar a definição que parece complexa à primeira vista, depois mergulhar em exemplos e formas de aplicar as transformações na previsão de volatilidade.
preview
Interpretação de modelos: Compreensão mais profunda dos modelos de aprendizado de máquina

Interpretação de modelos: Compreensão mais profunda dos modelos de aprendizado de máquina

O aprendizado de máquina é uma área fascinante e essencial para todos, independentemente da experiência que possuam. Neste artigo, vamos mergulhar nos detalhes dos mecanismos que fundamentam os modelos desenvolvidos, desvendaremos o intricado universo das características, das previsões e das soluções robustas, e alcançaremos uma interpretação cristalina dos modelos. Descubra como “fazer concessões”, aprimorar previsões, priorizar a importância dos parâmetros e fazer escolhas assertivas. Este texto servirá de guia para você aprimorar a eficácia dos modelos de aprendizado de máquina e maximizar os benefícios das metodologias aplicadas.
preview
Uma Formulação Genérica de Otimização (GOF) para Implementar Max Personalizado com Restrições

Uma Formulação Genérica de Otimização (GOF) para Implementar Max Personalizado com Restrições

Neste artigo, apresentaremos uma maneira de implementar problemas de otimização com múltiplos objetivos e restrições ao selecionar "Max Personalizado" na aba Configurações do terminal MetaTrader 5. Como exemplo, o problema de otimização pode ser: Maximizar o Fator de Lucro, o Lucro Líquido e o Fator de Recuperação, de modo que o Drawdown seja inferior a 10%, o número de perdas consecutivas seja inferior a 5, e o número de negociações por semana seja superior a 5.