Construindo um Modelo de Restrição de Tendência com Candlestick (Parte 5): Sistema de Notificação (Parte III)
Esta parte da série de artigos é dedicada à integração do WhatsApp com o MetaTrader 5 para notificações. Incluímos um fluxograma para simplificar o entendimento e discutiremos a importância das medidas de segurança na integração. O principal objetivo dos indicadores é simplificar a análise por meio da automação, e eles devem incluir métodos de notificação para alertar os usuários quando condições específicas forem atendidas. Descubra mais neste artigo.
Redes neurais de maneira fácil (Parte 64): Método de clonagem de comportamento ponderada conservadora (CWBC)
Pelo resultado dos testes realizados em artigos anteriores, concluímos que a qualidade da estratégia treinada depende muito da amostra de treinamento utilizada. Neste artigo, apresento a vocês um método simples e eficaz para selecionar trajetórias com o objetivo de treinar modelos.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 08): Perceptrons
Os perceptrons, redes com uma única camada oculta, podem ser um bom suporte para aqueles familiarizados com os fundamentos do trading automático e que desejam mergulhar nas redes neurais. Vamos examinar passo a passo como eles podem ser implementados no conjunto de classes de sinais, que faz parte das classes do Assistente MQL5 para EAs.
Desenvolvimento e teste de sistemas de negociação Aroon
Nesta artigo, aprenderemos como construir um sistema de negociação Aroon, estudando os fundamentos dos indicadores e as etapas necessárias para criar um sistema de negociação baseado no indicador Aroon. Depois de criar este sistema de negociação, verificaremos se ele pode ser lucrativo ou se necessita de otimização adicional.
Trabalho com modelos ONNX nos formatos float16 e float8
Os formatos de dados utilizados para representar modelos de aprendizado de máquina desempenham um papel fundamental em sua eficiência. Nos últimos anos, surgiram vários novos tipos de dados desenvolvidos especificamente para trabalhar com modelos de aprendizado profundo. Neste artigo, vamos focar em dois novos formatos de dados que se tornaram amplamente utilizados nos modelos modernos.
Algoritmos de otimização populacional: Algoritmo Boids, ou algoritmo de comportamento de enxame (Boids Algorithm, Boids)
Neste artigo, estudaremos algoritmo Boids, baseado em exemplos únicos de comportamento de enxame de animais. O algoritmo Boids, por sua vez, serviu como base para a criação de uma classe inteira de algoritmos, agrupados sob o nome de "Inteligência de Enxame".
Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro
Neste artigo, apresentamos a implementação de um algoritmo de seleção de características descrito em um artigo acadêmico intitulado "FREL: Um algoritmo estável de seleção de características", chamado de Ponderação de Características como Aprendizado Baseado em Energia Regularizada.
Algoritmo de tribo artificial (Artificial Tribe Algorithm, ATA)
O artigo analisa em detalhes os componentes-chave e as inovações do algoritmo de otimização ATA, que é um método evolutivo com um sistema de comportamento duplo único, que se adapta conforme a situação. Utilizando cruzamento para uma diversificação aprofundada, e migração para busca quando há estagnação em ótimos locais, o ATA combina aprendizado individual e social.
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 09): Combinação de agrupamento k-médias com ondas fractais
O agrupamento k-médias é uma abordagem para agrupar pontos de dados em um processo que inicialmente se concentra na representação macro do conjunto de dados, onde são aplicados centroides de cluster criados aleatoriamente. Com o tempo, esses centroides são ajustados e escalonados para representar melhor o conjunto de dados. Este artigo examina essa abordagem de agrupamento e algumas de suas aplicações.
Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX
O projeto envolve o uso de Python para previsão em mercados financeiros baseada em aprendizado profundo. Nós exploraremos as nuances do teste de desempenho do modelo usando indicadores-chave como erro absoluto médio (MAE), erro quadrático médio (MSE) e R-quadrado (R2), além de aprender a integrar tudo isso em um arquivo executável. Também criaremos um arquivo de modelo ONNX e um EA (Expert Advisor).
HTTP e Connexus (Parte 2): Entendendo a Arquitetura HTTP e o Design de Bibliotecas
Este artigo explora os fundamentos do protocolo HTTP, cobrindo os principais métodos (GET, POST, PUT, DELETE), códigos de status e a estrutura das URLs. Além disso, apresenta o início da construção da biblioteca Connexus com as classes CQueryParam e CURL, que facilitam a manipulação de URLs e parâmetros de consulta em requisições HTTP.
Simulação de mercado: Position View (III)
Nestes últimos artigos, tenho mencionado o fato de que precisamos em alguns momentos definir um valor para a propriedade ZOrder. Mas por que?!?! Já que muitos dos códigos, que adicionam objetos no gráfico, simplesmente não utilizam, ou melhor, não definem um valor para tal propriedade. Bem, não estou aqui, para dizer, o que cada programador, deve ou não fazer. Como ele deve ou não criar seus códigos. Estou aqui, a fim de mostrar, a você caro leitor, e interessado em realmente compreender como as coisas funcionam, por debaixo dos panos.
Desenvolvimento de um Cliente MQTT para o MetaTrader 5: metodologia TDD (Parte 3)
Este artigo faz parte de uma série que descreve as etapas do desenvolvimento de um cliente MQL5 nativo para o protocolo MQTT. Nesta parte, descrevemos em detalhes como aplicar o princípio do desenvolvimento orientado por testes para implementar a troca de pacotes CONNECT/CONNACK. Ao final desta etapa, nosso cliente DEVE ser capaz de agir apropriadamente ao trabalhar com todos os possíveis resultados do servidor ao tentar se conectar.
Análise causal de séries temporais usando entropia de transferência
Neste artigo, discutimos como a causalidade estatística pode ser aplicada para identificar variáveis preditivas. Exploraremos a relação entre causalidade e entropia de transferência, além de apresentar um código MQL5 para detectar transferências direcionais de informação entre duas variáveis.
Eigenvetores e autovalores: Análise exploratória de dados no MetaTrader 5
Neste artigo, exploramos diferentes maneiras pelas quais os eigenvetores e os autovalores podem ser aplicados na análise exploratória de dados para revelar relacionamentos únicos nos dados.
Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)
As últimas 2 partes foram dedicadas ao método transformador de decisões (DT), que modela sequências de ações no contexto de um modelo autorregressivo de recompensas desejadas. Neste artigo, vamos considerar outro algoritmo de otimização deste método.
Filtragem de Sazonalidade e Período de Tempo para Modelos de Deep Learning ONNX com Python para EA
Podemos nos beneficiar da sazonalidade ao criar modelos de Deep Learning com Python? A filtragem de dados para os modelos ONNX ajuda a obter melhores resultados? Qual período de tempo devemos usar? Cobriremos tudo isso neste artigo.
MQL5 Trading Toolkit (Parte 2): Expansão e Aplicação da Biblioteca EX5 para Gerenciamento de Posições
Aqui, você aprenderá a importar e utilizar bibliotecas EX5 em seu código ou projetos MQL5. Neste artigo, expandiremos a biblioteca EX5 criada anteriormente, adicionando mais funções de gerenciamento de posições e criando dois Expert Advisors (EA). No primeiro exemplo, usaremos o indicador técnico Variable Index Dynamic Average para desenvolver um EA baseado em uma estratégia de trailing stop. No segundo, implementaremos um painel de negociação para monitorar, abrir, fechar e modificar posições. Esses dois exemplos demonstrarão como utilizar a biblioteca EX5 aprimorada para o gerenciamento de posições.
Desenvolvendo um EA multimoeda (Parte 12): Gerenciamento de Risco como em empresas de prop trading
No EA em desenvolvimento, já temos um mecanismo de controle de rebaixamento implementado. No entanto, ele tem uma natureza probabilística, pois se baseia nos resultados de testes com dados históricos de preços. Assim, o rebaixamento, embora com pequena probabilidade, às vezes pode exceder os valores máximos esperados. Vamos tentar adicionar um mecanismo que garanta a manutenção de um nível de rebaixamento predefinido.
Ciclos e Forex
Os ciclos têm grande importância em nossas vidas. Dia e noite, estações do ano, dias da semana e muitos outros ciclos de naturezas diferentes fazem parte do cotidiano de qualquer pessoa. Neste artigo, tentaremos examinar os ciclos nos mercados financeiros.
Processos não estacionários e regressão espúria
O objetivo do artigo é demonstrar a ocorrência de falsa regressão quando se aplica a análise de regressão a processos não estacionários, utilizando simulação pelo método de Monte Carlo.
Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa
A pesquisa do ambiente em tarefas de aprendizado por reforço é um problema atual. Anteriormente, já examinamos algumas abordagens. E hoje, eu proponho que nos familiarizemos com mais um método, baseado na maximização da norma nuclear. Ele permite que os agentes destaquem estados do ambiente com alto grau de novidade e diversidade.
Do básico ao intermediário: Comandos BREAK e CONTINUE
Neste artigo veremos como usar os comando RETURN, BREAK e CONTINUE dentro de um laço. Entender o que cada um destes comandos faz no fluxo de execução de um laço é algo muito importante, para que você consiga trabalhar com aplicações mais elaboradas. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Teoria das Categorias em MQL5 (Parte 16): funtores com perceptrons multicamadas
Continuamos a examinar funtores e como eles podem ser implementados usando redes neurais artificiais. Vamos temporariamente deixar de lado a abordagem que incluía a previsão de volatilidade, e tentar implementar nossa própria classe de sinais para estabelecer sinais para entrar e sair de uma posição.
Algoritmos de otimização populacionais: enxame de pássaros (Bird Swarm Algorithm, BSA)
O artigo explora o BSA, um algoritmo baseado no comportamento das aves, inspirado na interação coletiva das aves em bando na natureza. Diferentes estratégias de busca dos indivíduos no BSA, incluindo a alternância entre comportamento de voo, vigilância e procura de alimento, tornam esse algoritmo multifacetado. Ele utiliza os princípios de comportamento de bando, comunicação, adaptabilidade, liderança e acompanhamento das aves para a busca eficaz de soluções ótimas.
Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)
O aprendizado contrastivo é um método de aprendizado de representação sem supervisão. Seu objetivo é ensinar o modelo a identificar semelhanças e diferenças nos conjuntos de dados. Neste artigo, discutiremos o uso de abordagens de aprendizado contrastivo para explorar diferentes habilidades do Ator.
Experiência no desenvolvimento de estratégias de negociação
Neste artigo, proponho tentarmos desenvolver nossa própria estratégia de negociação. Uma estratégia de negociação deve ser construída com base em uma determinada vantagem estatística. E tal vantagem deve ser duradoura.
Busca de padrões arbitrários em pares de moedas no Python com o uso do MetaTrader 5
Existem padrões repetitivos e regularidades no mercado cambial? Decidi criar meu próprio sistema de análise de padrões usando Python e MetaTrader 5. Uma espécie de simbiose entre matemática e programação para conquistar o Forex.
DoEasy. Controles (Parte 18): Preparando a funcionalidade para rolagem de guias no TabControl
Neste artigo colocaremos os botões de controle de rolagem de cabeçalhos no objeto WinForms TabControl caso a fileira de cabeçalhos não se ajuste ao tamanho do controle, e faremos o deslocamento da linha de cabeçalho quando clicamos no cabeçalho de uma guia cortada.
Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte II
Neste artigo, vamos considerar o algoritmo genético binário (BGA), que modela os processos naturais que ocorrem no material genético dos seres vivos na natureza.
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 4): Personalizando o Estilo de Exibição para Cada Onda de Tendência
Neste artigo, exploraremos as capacidades da poderosa linguagem MQL5 na criação de vários estilos de indicadores no MetaTrader 5. Também analisaremos os scripts e como eles podem ser utilizados em nosso modelo.
Do básico ao intermediário: Sobrecarga
Este talvez será o artigo mais confuso para você iniciante. Já que aqui mostrarei que nem sempre, teremos em um mesmo código, todas funções e procedimentos com nomes exclusivos. Podemos sim ter funções e procedimentos com um mesmo nome e isto é conhecido como sobrecarga. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
Redes neurais em trading: Modelo adaptativo multiagente (MASA)
Apresento o framework adaptativo multiagente MASA, que une aprendizado por reforço e estratégias adaptativas, oferecendo um equilíbrio harmonioso entre rentabilidade e controle de riscos em condições de mercado turbulentas.
Desenvolvendo um EA multimoeda (Parte 18): Automação da seleção de grupos considerando o período forward
Continuaremos automatizando etapas que anteriormente realizávamos manualmente. Desta vez, voltaremos à automação da segunda etapa, ou seja, a escolha do grupo ideal de instâncias individuais de estratégias de negociação, complementada pela capacidade de considerar os resultados dessas instâncias no período forward.
Algoritmos de otimização populacionais: Algoritmo de evolução da mente (Mind Evolutionary Computation, MEC)
Este artigo discute um algoritmo da família MEC, denominado algoritmo simples de evolução da mente (Simple MEC, SMEC). O algoritmo se destaca pela beleza da ideia subjacente e pela simplicidade de implementação.
Construção de um modelo de restrição de tendência de velas (Parte 1): Para EAs e indicadores técnicos
Este artigo é voltado para desenvolvedores iniciantes e experientes em MQL5. Ele oferece um código que define indicadores para gerar sinais, limitando-os com base nas tendências de timeframes mais altos. Dessa forma, traders podem aprimorar suas estratégias ao incluir uma visão mais ampla do mercado, o que pode resultar em sinais de negociação potencialmente mais confiáveis.
DoEasy. Controles (Parte 28): Estilos de barra no controle ProgressBar
Neste artigo veremos estilos de exibição e texto descritivo para o controle ProgressBar.
Redes neurais de maneira fácil (Parte 58): transformador de decisões (Decision Transformer — DT)
Continuamos a explorar os métodos de aprendizado por reforço. Neste artigo, proponho apresentar um algoritmo ligeiramente diferente que considera a política do agente sob a perspectiva de construir uma sequência de ações.
Técnicas do MQL5 Wizard que você deve conhecer (Parte 24): Médias Móveis
Médias Móveis são um indicador muito comum, usado e compreendido pela maioria dos traders. Exploramos possíveis casos de uso que podem não ser tão comuns dentro dos Expert Advisors montados no MQL5 Wizard.
Redes neurais em trading: Framework híbrido de negociação com codificação preditiva (StockFormer)
Apresentamos o sistema de negociação híbrido StockFormer, que combina codificação preditiva e algoritmos de aprendizado por reforço (RL). O framework utiliza 3 ramos Transformer com mecanismo integrado Diversified Multi-Head Attention (DMH-Attn), que melhora o módulo de atenção padrão com um bloco Feed-Forward multicabeça, permitindo capturar padrões de séries temporais em diferentes subespaços.