ニューラルネットワークが簡単に(第90回):時系列の周波数補間(FITS)
FEDformer法を研究することで、時系列表現の周波数領域への扉を開きました。この新しい記事では、私たちが始めたトピックを続けます。分析をおこなうだけでなく、特定の分野におけるその後の状態を予測することができる手法について考えてみたいと思います。
プライスアクション分析ツールキットの開発(第2回): Analytical Commentスクリプト
プライスアクションを簡素化するというビジョンに沿って、市場分析を大幅に強化し、十分な情報に基づいた意思決定を支援する新しいツールを導入できることを嬉しく思います。このツールは、前日の価格、重要な支持と抵抗のレベル、取引量などの主要なテクニカル指標を表示し、チャート上に視覚的なヒントを自動的に生成します。
知っておくべきMQL5ウィザードのテクニック(第48回):ビル・ウィリアムズのアリゲーター
ビル・ウィリアムズが考案したアリゲーターインジケーターは、明確なシグナルを生成し、他のインジケーターと組み合わせて使用されることが多い、多機能なトレンド識別インジケーターです。MQL5ウィザードのクラスとアセンブリを活用することで、パターンベースでさまざまなシグナルをテストできるため、このインジケーターも検討対象となります。
MQL5入門(第18回):ウォルフ波動パターンの基本
本記事では、ウォルフ波動(Wolfe Wave)パターンを詳細に解説し、弱気と強気の両方のバリエーションを取り上げます。また、この高度なチャートパターンに基づいて有効な買いと売りのセットアップを特定するためのステップごとのロジックも分解して説明します。
プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA
市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。
ニューラルネットワークが簡単に(第70回):閉形式方策改善演算子(CFPI)
この記事では、閉形式の方策改善演算子を使用して、オフラインモードでエージェントの行動を最適化するアルゴリズムを紹介します。
ニュース取引が簡単に(第2回):リスク管理
この記事では、以前のコードと新しいコードに継承を導入します。効率性を高めるために新しいデータベース設計が実装されます。さらに、取引量計算に取り組むためのリスク管理クラスも作成されます。
知っておくべきMQL5ウィザードのテクニック(第24回):移動平均
移動平均は、ほとんどのトレーダーが使用し、理解している非常に一般的な指標です。この記事では、MQL5ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、あまり一般的ではないかもしれない使用例を探っていきます。
ニューラルネットワークが簡単に(第50回):Soft Actor-Critic(モデルの最適化)
前回の記事では、Soft Actor-Criticアルゴリズムを実装しましたが、有益なモデルを訓練することはできませんでした。今回は、先に作成したモデルを最適化し、望ましい結果を得ます。
知っておくべきMQL5ウィザードのテクニック(第46回):一目均衡表
一目均衡表はトレンド識別システムとして機能する有名な日本の指標です。以前の同様の記事と同様に、パターンごとにこれを調べ、MQL5ウィザードライブラリクラスとアセンブリの助けを借りて、その戦略とテストレポートも評価します。
リプレイシステムの開発(第41回):第2段階(II)の開始
もし、この時点まですべてが正しく思えたとしたら、それはアプリケーションの開発を始めるときに、長期的なことをあまり考えていないということです。時間が経つにつれて、新しいアプリケーションをプログラムする必要はなくなり、それらを連携させるだけで済むようになります。それでは、マウス指標を組み立てる方法を説明しましょう。
リプレイシステムの開発 - 市場シミュレーション(第25回):次の段階への準備
この記事では、リプレイ/シミュレーションシステム開発の第1段階を完了しました。この成果により、システムが高度なレベルに達したことを確認し、新機能の導入への道を開くことができました。目標は、システムをさらに充実させ、市場分析の調査開発のための強力なツールに変えることです。
市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例
この記事では、MQL5で因果ネットワーク分析(CNA: Causal Network Analysis)とベクトル自己回帰(VAR: Vector Autoregression)デルを使用した高度な取引システムを実装するための包括的なガイドを紹介します。これらの手法の理論的背景をカバーし、取引アルゴリズムにおける主要な機能を詳細に説明し、実装のためのサンプルコードも含んでいます。
高度なICT取引システムの開発:インジケーターへのオーダーブロックの実装
この記事では、オーダーブロックのミティゲーションを検出し、描画し、アラートを発するインジケーターの作り方を学びます。また、チャート上でこれらのブロックを正確に特定する方法や、正確なアラートの設定方法、価格の動きをより理解しやすくするために矩形で位置を可視化する方法についても詳しく解説します。このインジケーターは、スマートマネーコンセプトやインナーサークルトレーダーの手法を用いるトレーダーにとって重要なツールとなるでしょう。
MQL5での取引戦略の自動化(第28回):視覚的フィードバックによるプライスアクションバットハーモニックパターンの作成
本記事では、MQL5で弱気と強気の両方のバット(Bat)ハーモニックパターンを、ピボットポイントとフィボナッチ比率を用いて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを用いて取引を自動化するバットパターンシステムを開発し、チャートオブジェクトによる視覚的フィードバックを強化します。
リプレイシステムの開発(第37回):道を切り開く(I)
今回は、もっと前にやりたかったことをようやく始めます。確固たる地盤がないため、この部分を公に発表する自信がありませんでした。今、私にはその根拠があります。この記事の内容を理解することにできるだけ集中することをお勧めします。単に読むだけではなくて、という意味です。ここで強調しておきたいのは、この記事を理解できなければ、それに続く記事の内容を理解することはできないということです。
多通貨エキスパートアドバイザーの開発(第5回):可変ポジションサイズ
前回開発中のエキスパートアドバイザー(EA)は、固定されたポジションサイズのみを使用して取引をおこなうことができました。これはテスト用には許容できますが、実際の口座で取引する場合にはお勧めできません。可変のポジションサイズで取引できるようにしましょう。
知っておくべきMQL5ウィザードのテクニック(第15回):ニュートンの多項式を用いたサポートベクトルマシン
サポートベクトルマシンは、データの次元を増やす効果を調べることで、あらかじめ定義されたクラスに基づいてデータを分類します。これは教師あり学習法で、多次元のデータを扱う可能性を考えるとかなり複雑です。この記事では、2次元データの非常に基本的な実装であるニュートンの多項式が、価格とアクションを分類する際にどのように効率的に実行できるかを検討します。
取引におけるニューラルネットワーク:状態空間モデル
これまでにレビューしたモデルの多くは、Transformerアーキテクチャに基づいています。ただし、長いシーケンスを処理する場合には非効率的になる可能性があります。この記事では、状態空間モデルに基づく時系列予測の別の方向性について説明します。
MQL5における高度な注文執行アルゴリズム:TWAP、VWAP、アイスバーグ注文
MQL5フレームワークで、機関投資家向けの高度な執行アルゴリズム(TWAP、VWAP、アイスバーグ注文)を小口トレーダー向けに提供します。統合された実行マネージャーとパフォーマンスアナライザーを用いて、注文の分割(スライシング)や分析をよりスムーズかつ正確に行える環境を提供します。
多通貨エキスパートアドバイザーの開発(第12回):プロップトレーディングレベルのリスクマネージャーの育成
開発中のEAには、ドローダウンを制御するための特定のメカニズムがすでに備わっています。しかし、これは過去の価格データに対するテストの結果に基づいているため、本質的には確率的です。したがって、ドローダウンは最大予想値を超える場合があります (ただし、確率は小さいです)。指定されたドローダウン レベルへの準拠を保証するメカニズムを追加してみましょう。
リプレイシステムの開発(第57回):テストサービスについて
注意点が1つあります。この記事にはサービスコードは含まれておらず、次の記事でのみ提供されます。ただし、実際の開発の出発点として同じコードを使用するため、この記事ではその説明をおこないます。ですので、注意深く、そして忍耐強く読んでください。毎日、すべてがさらに面白くなっていきますので、次の記事を楽しみにお待ちください。
外国為替平均回帰戦略のためのカルマンフィルター
カルマンフィルターは、価格変動のノイズを除去して金融時系列の真の状態を推定するために、アルゴリズム取引で用いられる再帰的なアルゴリズムです。新しい市場データに基づいて予測を動的に更新するため、平均回帰のような適応型戦略において非常に有用です。本記事ではまず、カルマンフィルターの計算方法と実装について紹介します。次に、このフィルターをクラシックな平均回帰型の外国為替(FX)戦略に適用する例を示します。最後に、異なる通貨ペアにおいてカルマンフィルターと移動平均を比較し、さまざまな統計分析をおこないます。
ダーバスボックスブレイクアウト戦略における高度な機械学習技術の探究
ニコラス・ダーバスによって考案された「ダーバスボックスブレイクアウト戦略」は、株価が一定の「ボックス」レンジを上抜けたときに強い上昇モメンタムが示唆されることから、買いシグナルを見極めるためのテクニカル取引手法です。本記事では、この戦略コンセプトを例として用い、機械学習の3つの高度な技術を探っていきます。それは、取引をフィルタリングするのではなくシグナルを生成するために機械学習モデルを使用すること、離散的ではなく連続的なシグナルを用いること、異なる時間枠で学習されたモデルを使って取引を確認すること、の3点です。
MQL5での取引戦略の自動化(第19回):Envelopes Trend Bounce Scalping - 取引執行とリスク管理(その2)
この記事では、MQL5でEnvelopes Trend Bounce Scalping戦略の取引実行とリスク管理を実装します。注文の発注、ストップロスやポジションサイズなどのリスク制御をおこないます。最後に、第18回の基盤をもとにバックテストと最適化をおこないます。
知っておくべきMQL5ウィザードのテクニック(第72回):教師あり学習でMACDとOBVのパターンを活用する
前回の記事で紹介したMACDとOBVのインジケーターペアをフォローアップし、今回はこのペアを機械学習でどのように強化できるかを見ていきます。MACDとOBVは、それぞれトレンド系と出来高系という補完的なペアです。私たちの機械学習アプローチでは、畳み込みニューラルネットワーク(CNN)を使い、カーネルとチャンネルのサイズを調整する際に指数カーネルを利用して、このインジケーターペアの予測をファインチューニングします。今回もこれまでと同様に、MQL5ウィザードでエキスパートアドバイザー(EA)を組み立てられるようにしたカスタムシグナルクラスファイル内で実装しています。
リプレイシステムの開発 - 市場シミュレーション(第21回):FOREX (II)
FOREX市場で作業するためのシステムを構築し続けます。この問題を解決するためには、まず、前のバーを読み込む前にティックの読み込みを宣言しなければなりません。これによって問題は解決されますが、同時にユーザーは構成ファイルの構造に従わざるを得なくなります。これは個人的にはあまり意味がありません。なぜなら、構成ファイルの内容を分析し、実行する役割を担うプログラムを設計することで、ユーザーが必要な要素を好きな順番で宣言できるようになるからです。
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)
マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
データサイエンスとML(第41回):YOLOv8を用いた外国為替および株式市場のパターン検出
金融市場でパターンを検出するのは、チャート上の内容を確認する必要があるため困難ですが、これは画像の制限によりMQL5では実行が困難です。この記事では、最小限の労力でチャート上のパターンを検出するのに役立つ、Pythonで作成された適切なモデルについて説明します。
取引におけるカオス理論(第1回):金融市場における導入と応用、リアプノフ指数
カオス理論は金融市場に適用できるでしょうか。この記事では、従来のカオス理論とカオスシステムがビル・ウィリアムズが提案した市場のカオスの概念とどのように異なるかについて考察します。
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)
本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)
今日は、PythonとTelegram Bot APIと連携して、MQL5のパワーを活用した MetaTrader 5指標通知のための実用的なTelegram統合について説明します。ポイントが見逃がされることがないように、すべてを詳細に説明します。このプロジェクトが終了する頃には、ご自分のプロジェクトに応用できる貴重な洞察を得ることができるでしょう。
MQL5で取引管理者パネルを作成する(第4回):ログインセキュリティ層
悪意のある人物が取引管理者室に侵入し、世界中の何百万ものトレーダーに貴重な洞察を伝えるために使用されるコンピューターと管理パネルにアクセスしたと想像してください。このような侵入は、誤解を招くメッセージの不正送信や、意図しないアクションをトリガーするボタンのランダムクリックなど、悲惨な結果につながる可能性があります。このディスカッションでは、MQL5のセキュリティ対策と、これらの脅威から保護するために管理パネルに実装した新しいセキュリティ機能について説明します。セキュリティプロトコルを強化することで、通信チャネルを保護し、グローバルな取引コミュニティの信頼を維持することを目指しています。この記事のディスカッションでさらに詳しい情報を見つけてください。
化学反応最適化(CRO)アルゴリズム(第1回):最適化におけるプロセス化学
この記事の最初の部分では、化学反応の世界に飛び込み、最適化への新しいアプローチを発見します。化学反応最適化(CRO)は、熱力学の法則から導き出された原理を使用して効率的な結果をもたらします。この革新的な方法の基礎となった分解、合成、その他の化学プロセスの秘密を明らかにします。
MQL5でのカスタム市場レジーム検出システムの構築(第1回):インジケーター
この記事では、自己相関やボラティリティなどの統計手法を用いたMQL5市場レジーム検出システム(Market Regime Detection System)の作成方法を詳述しています。トレンド相場、レンジ相場、ボラティリティの高い相場を分類するためのクラスや、カスタムインジケーターのコードも提供しています。
ウィリアム・ギャンの手法(第2回):ギャンスクエアインジケーターの作成
ギャンのSquare of 9に基づいて、時間と価格を2乗したインジケーターを作成します。コードを準備し、プラットフォームで異なる時間間隔でインジケーターをテストします。
ニュース取引が簡単に(第5回):取引の実施(II)
この記事では、取引管理クラスを拡張し、ニュースイベントを取引するための買い逆指値注文(買いストップ注文)と売り逆指値注文(売りストップ注文)を追加します。また、オーバーナイト取引を防ぐために、これらの注文に有効期限の制約を実装します。さらに、逆指値注文(ストップ注文)を使用する際に発生しうるスリッページ、特にニュースイベント中に発生する可能性のあるスリッページを防止または最小限に抑えるために、スリッページ関数をエキスパートアドバイザー(EA)に組み込みます。
取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ
この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。
MQL5で自己最適化エキスパートアドバイザーを構築する(第4回):動的なポジションサイズ調整
アルゴリズム取引を成功させるには、継続的かつ学際的な学習が必要です。しかし、その可能性は無限であるがゆえに、明確な成果が得られないまま、何年もの努力を費やしてしまうこともあります。こうした課題に対応するため、私たちは徐々に複雑さを導入するフレームワークを提案します。これにより、トレーダーは不確実な結果に対して無限の時間を費やすのではなく、戦略を反復的に洗練させることが可能になります。