MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
preview
リプレイシステムの開発(第27回):エキスパートアドバイザープロジェクト-C_Mouseクラス(I)

リプレイシステムの開発(第27回):エキスパートアドバイザープロジェクト-C_Mouseクラス(I)

この記事では、C_Mouseクラスを実装します。このクラスは、最高水準でプログラミングする能力を提供します。しかし、高水準や低水準のプログラミング言語について語ることは、コードに卑猥な言葉や専門用語を含めることではありません。逆です。高水準プログラミング、低水準プログラミングというのは、他のプログラマーが理解しやすいか、しにくいかという意味です。
preview
ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

ニューラルネットワークが簡単に(第73回):値動きを予測するAutoBot

引き続き、軌道予測モデルを訓練するアルゴリズムについて説明します。この記事では、「AutoBot」と呼ばれるメソッドを紹介します。
preview
MQL5取引ツールキット(第8回):コードベースにHistory Manager EX5ライブラリを実装して使用する方法

MQL5取引ツールキット(第8回):コードベースにHistory Manager EX5ライブラリを実装して使用する方法

MetaTrader 5口座の取引履歴を処理するために、MQL5ソースコード内で「History Manager EX5」ライブラリを簡単にインポートして活用する方法を、本連載の最終回となるこの記事で解説します。MQL5ではシンプルな1行の関数呼び出しで、取引データの管理や分析を効率的におこなうことが可能です。さらに、取引履歴の分析スクリプトを複数作成する方法や、実用的なユースケースとして、価格ベースのエキスパートアドバイザー(EA)の開発方法についても学んでいきます。このEAは、価格データとHistory Manager EX5ライブラリを活用し、過去のクローズ済み取引に基づいて取引判断をおこない、取引量の調整やリカバリーストラテジーの実装をおこないます。
preview
MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

外国為替市場には繰り返しパターンや規則性が存在するのでしょうか。私は、PythonとMetaTrader 5を使って独自のパターン分析システムを構築することに決めました。これは、外国為替市場を攻略するための、数学とプログラミングの一種の融合です。
preview
知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

知っておくべきMQL5ウィザードのテクニック(第49回):近接方策最適化による強化学習

近接方策最適化は、強化学習におけるアルゴリズムの一つで、モデルの安定性を確保するために、しばしばネットワーク形式で非常に小さな増分で方策を更新します。前回の記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)において、これがどのように役立つかを探ります。
preview
知っておくべきMQL5ウィザードのテクニック(第40回):Parabolic SAR(パラボリックSAR)

知っておくべきMQL5ウィザードのテクニック(第40回):Parabolic SAR(パラボリックSAR)

パラボリックSAR (Stop-and-Reversal)は、トレンドの確認と終了点を示す指標です。トレンドの見極めが遅れるため、その主な目的は、ポジションのトレーリングストップロスを位置づけることです。ウィザードで組み立てられるエキスパートアドバイザー(EA)のカスタムシグナルクラスを活用して、本当にEAのシグナルとして使えるかどうか調べてみました。
preview
ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)

ニューラルネットワークが簡単に(第71回):目標条件付き予測符号化(GCPC)

前回の記事では、Decision Transformer法と、そこから派生したいくつかのアルゴリズムについて説明しました。さまざまな目標設定手法で実験しました。実験では、さまざまな方法で目標を設定しましたが、それ以前に通過した軌跡に関するモデルの研究は、常に私たちの関心の外にありました。この記事では、このギャップを埋める手法を紹介したいと思います。
preview
ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減

ニューラルネットワークが簡単に(第95回):Transformerモデルにおけるメモリ消費の削減

Transformerアーキテクチャに基づくモデルは高い効率を示しますが、その使用は、訓練段階と運転中の両方で高いリソースコストによって複雑になります。この記事では、このようなモデルのメモリ使用量を削減するアルゴリズムを紹介します。
preview
MQL5での取引戦略の自動化(第22回):Envelopes Trend取引のためのZone Recoveryシステムの作成

MQL5での取引戦略の自動化(第22回):Envelopes Trend取引のためのZone Recoveryシステムの作成

本記事では、Envelopes Trend取引戦略と統合されたZone Recoveryシステムを開発します。RSI (Relative Strength Index)とEnvelopesインジケーターを用いて取引を自動化し、損失を抑えるリカバリーゾーンを効果的に管理するためのアーキテクチャを詳述します。実装とバックテストを通じて、変動する市場環境に対応できる効果的な自動取引システムの構築方法を示します。
preview
リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

リプレイシステムの開発(第47回):Chart Tradeプロジェクト(VI)

ついに、Chart Trade指標はEAと相互作用を開始し、情報をインタラクティブに転送できるようにします。そこで今回は、この指標を改良し、どのEAでも使えるような機能的なものにします。これにより、Chart Trade指標にアクセスし、実際にEAに接続されているかのように操作できるようになります。しかし、以前よりもずっと興味深い方法でそれをおこなうつもりです。
preview
知っておくべきMQL5ウィザードのテクニック(第20回):関数同定問題

知っておくべきMQL5ウィザードのテクニック(第20回):関数同定問題

関数同定問題は、研究対象のデータセットをマッピングする基本モデルがどのようなものであるかについて、最小限の仮定から始める回帰の形式です。ベイズ法やニューラルネットワークでも実装可能ですが、ここでは遺伝的アルゴリズムによる実装が、MQL5ウィザードで使用可能なExpertSignalクラスのカスタマイズにどのように役立つかを見ていきます。
preview
Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

移動平均線のクロスオーバーに基づくゴールデンクロスおよびデッドクロス戦略は、長期的な市場トレンドを見極める上で最も信頼性の高い指標の一つであることをご存知でしょうか。ゴールデンクロスは、短期移動平均線が長期移動平均線を上回るときに強気トレンドの到来を示します。一方、デッドクロスは、短期移動平均線が長期線を下回ることで弱気トレンドの兆候を示します。これらの戦略は非常にシンプルでありながら効果的ですが、手動で運用すると機会の逸失やエントリーの遅れが発生しやすいという課題があります。
preview
リプレイシステムの開発(第26回):エキスパートアドバイザープロジェクト-C_Terminalクラス

リプレイシステムの開発(第26回):エキスパートアドバイザープロジェクト-C_Terminalクラス

これで、リプレイ/シミュレーションシステムで使用するEAの作成を開始できます。ただし、行き当たりばったりの解決策ではなく、何か改善策が必要です。にもかかわらず、最初の複雑さに怯んではなりません。どこかで始めることが重要で、そうでなければ、その課題を克服しようともせずに、その難しさを反芻してしまうことになります。それこそがプログラミングの醍醐味であり、学習、テスト、徹底的な研究を通じて障害を克服することです。
preview
MQL5における組合せ対称交差検証法

MQL5における組合せ対称交差検証法

この記事では、ストラテジーテスターの低速&完全アルゴリズムを使用してストラテジーを最適化した後に過剰学習が発生する可能性の程度を測定するために、純粋なMQL5における組合せ対称交差検証法の実装を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第03回):シャノンのエントロピー

知っておくべきMQL5ウィザードのテクニック(第03回):シャノンのエントロピー

今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探し、試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがトレーダーの主力であるべきであることを示します。
preview
ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)

ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)

前回の記事では、画像内のオブジェクトを検出する方法の1つを紹介しました。ただし、静的な画像の処理は、私たちが分析する価格のダイナミクスのような動的な時系列の処理とは多少異なります。この記事では、私たちが解決しようとしている問題にやや近い、ビデオ中の物体を検出する方法について考えます。
preview
多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択

多通貨エキスパートアドバイザーの開発(第7回):フォワード期間に基づくグループの選択

以前は、個々のインスタンスの最適化が実施されたのと同じ期間においてのみ、共同運用の結果を改善する目的で、取引戦略インスタンスグループの選択を評価しました。フォワード期間中に何が起こるか見てみましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト

知っておくべきMQL5ウィザードのテクニック(第21回):経済指標カレンダーデータによるテスト

経済指標カレンダーのデータは、デフォルトではストラテジーテスターのエキスパートアドバイザー(EA)でテストすることはできません。この制限を回避するために、データベースがどのように役立つかを考察します。そこでこの記事では、SQLiteデータベースを使用して経済指標カレンダーのニュースをアーカイブし、ウィザードで組み立てられたEAがこれを使用して売買シグナルを生成できるようにする方法を探ります。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):自己適応型取引ルール(II)

MQL5で自己最適化エキスパートアドバイザーを構築する(第6回):自己適応型取引ルール(II)

本記事では、より良い売買シグナルを得るために、RSIのレベルと期間を最適化する方法を探ります。最適なRSI値を推定する手法や、グリッドサーチと統計モデルを用いた期間選定の自動化について紹介します。最後に、Pythonによる分析を活用しながら、MQL5でソリューションを実装します。私たちのアプローチは、複雑になりがちな問題をシンプルに解決することを目指した、実用的かつ分かりやすいものです。
preview
初心者からエキスパートへ:MQL5取引のエッセンシャルジャーニー

初心者からエキスパートへ:MQL5取引のエッセンシャルジャーニー

潜在能力を引き出しましょう。あなたはチャンスに囲まれています。MQL5の旅をスタートさせ、次のレベルへと引き上げる3つの秘訣をご覧ください。初心者にもプロにも役立つヒントやトリックをご紹介します。
preview
MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)

MQL5で取引管理者パネルを作成する(第3回):テーマ管理のための組み込みクラスの拡張(II)

このディスカッションでは、既存のダイアログライブラリを慎重に拡張して、テーマ管理ロジックを組み込みます。さらに、管理パネルプロジェクトで使用されるCDialog、CEdit、およびCButtonクラスにテーマ切り替えのメソッドを統合します。さらに洞察力のある視点については、引き続きお読みください。
preview
MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

MQL5での取引戦略の自動化(第7回):動的ロットスケーリングを備えたグリッド取引EAの構築

この記事では、動的なロットスケーリングを採用したMQL5のグリッドトレーディングエキスパートアドバイザー(EA)を構築します。戦略の設計、コードの実装、バックテストのプロセスについて詳しく解説します。最後に、自動売買システムを最適化するための重要な知見とベストプラクティスを共有します。
preview
ニューラルネットワークが簡単に(第75回):軌道予測モデルのパフォーマンス向上

ニューラルネットワークが簡単に(第75回):軌道予測モデルのパフォーマンス向上

私たちが作成するモデルはより大きく、より複雑になっています。そのため、訓練だけでなく、運用にもコストがかかります。しかし、決断に要する時間はしばしば重要です。この観点から、品質を損なうことなくモデルのパフォーマンスを最適化する手法を考えてみましょう。
preview
ニューラルネットワークが簡単に(第78回):Transformerを用いたデコーダなしの物体検出器(DFFT)

ニューラルネットワークが簡単に(第78回):Transformerを用いたデコーダなしの物体検出器(DFFT)

この記事では、取引戦略の構築という問題を別の角度から見てみようと思います。将来の値動きを予測するのではなく、過去のデータの分析に基づいた取引システムの構築を試みます。
preview
取引におけるニューラルネットワーク:点群の階層的特徴量学習

取引におけるニューラルネットワーク:点群の階層的特徴量学習

点群から特徴量を抽出するアルゴリズムの研究を続けます。この記事では、PointNet手法の効率を高めるメカニズムについて解説します。
preview
MQL5入門(第15回):初心者のためのカスタムインジケーター作成ガイド(IV)

MQL5入門(第15回):初心者のためのカスタムインジケーター作成ガイド(IV)

この記事では、MQL5でプライスアクションインジケーターを構築する方法を学びます。具体的には、トレンド分析において重要なポイントである、安値(L)、高値(H)、安値切り上げ(HL)、高値更新(HH)、安値更新(LL)、高値切り下げ(LH)といった構造の把握に焦点を当てます。また、プレミアムゾーンとディスカウントゾーンの識別、50%リトレースメントレベルの表示、リスクリワード比に基づく利益目標の計算についても解説します。さらに、トレンド構造に基づいてエントリーポイント、ストップロス(SL)、テイクプロフィット(TP)の設定方法も扱います。
preview
リプレイシステムの開発(第38回):道を切り開く(II)

リプレイシステムの開発(第38回):道を切り開く(II)

MQL5プログラマーを自認する人の多くは、この記事で概説するような基本的な知識を持っていません。MQL5は多くの人によって限定的なツールだと考えてられていますが、実際の理由は、そのような人たちが必要な知識を持っていないということです。知らないことがあっても恥じることはありません。聞かなかったことを恥じるべきです。MetaTrader 5で指標の複製を強制的に無効にするだけでは、指標とEA間の双方向通信を確保することはできません。まだこれにはほど遠いものの、チャート上でこの指標が重複していないという事実は、私たちに自信を与えてくれます。
preview
知っておくべきMQL5ウィザードのテクニック(第36回):マルコフ連鎖を用いたQ学習

知っておくべきMQL5ウィザードのテクニック(第36回):マルコフ連鎖を用いたQ学習

強化学習は、教師あり学習、教師なし学習と並んで、機械学習における3つの主要な考え方の1つです。そのため、最適制御、つまり目的関数に最も適した長期的な方針を学習することに関心があります。このような背景から、ウィザードが作成したEAのMLPの学習プロセスにおいて、MLPがどのような役割を果たす可能性があるのかを探ります。
preview
リプレイシステムの開発(第32回):受注システム(I)

リプレイシステムの開発(第32回):受注システム(I)

これまで開発してきたものの中で、このシステムが最も複雑であることは、おそらく皆さんもお気づきでしょうし、最終的にはご納得いただけると思います。あとは非常に単純なことですが、取引サーバーの動作をシミュレーションするシステムを作る必要があります。取引サーバーの操作方法を正確に実装する必要性は、当然のことのように思えます。少なくとも言葉ではです。ただし、リプレイ/シミュレーションシステムのユーザーにとって、すべてがシームレスで透明なものとなるようにする必要があります。
preview
Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)

Candlestick Trend Constraintモデルの構築(第9回):マルチ戦略エキスパートアドバイザー(I)

今日は、MQL5を使って複数の戦略をエキスパートアドバイザー(EA)に組み込む可能性を探ります。EAは、指標やスクリプトよりも幅広い機能を提供し、変化する市場環境に適応できる、より洗練された取引アプローチを可能にします。詳しくは、この記事のディスカッションをご覧ください。
preview
MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。
preview
外国為替におけるポートフォリオ最適化:VaRとマーコウィッツ理論の統合

外国為替におけるポートフォリオ最適化:VaRとマーコウィッツ理論の統合

FXにおけるポートフォリオ取引はどのように機能するのでしょうか。マーコウィッツのポートフォリオ理論による資産配分最適化と、VaRモデルによるリスク最適化はどのように統合できるのでしょうか。ポートフォリオ理論に基づいたコードを作成し、一方では低リスクを確保し、もう一方では受け入れ可能な長期的収益性を得ることを試みます。
preview
MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張

MQL5取引ツールキット(第6回):直近で約定された予約注文に関する関数で履歴管理EX5ライブラリを拡張

EX5モジュールで、直近で約定された予約注文のデータをシームレスに取得・格納するエクスポート可能な関数を作成する方法を学びます。このステップバイステップの包括的なガイドでは、直近で約定された予約注文の重要なプロパティ(注文タイプ、発注時間、約定時間、約定タイプなど)を取得するための専用かつ機能別の関数群を開発することで、履歴管理EX5ライブラリをさらに強化していきます。これらのプロパティは、予約注文の取引履歴を効果的に管理・分析するうえで重要な情報です。
preview
リプレイシステムの開発 - 市場シミュレーション(第24回):FOREX (V)

リプレイシステムの開発 - 市場シミュレーション(第24回):FOREX (V)

本日は、Last価格に基づくシミュレーションを妨げていた制限を取り除き、このタイプのシミュレーションに特化した新しいエントリポイントをご紹介します。操作の仕組みはすべて、FOREX市場の原理に基づいています。この手順の主な違いは、BidシミュレーションとLastシミュレーションの分離です。ただし、時間をランダム化し、C_Replayクラスに適合するように調整するために使用された方法は、両方のシミュレーションで同じままであることに注意することが重要です。これは良いことです。特にティック間の処理時間に関して、一方のモードを変更すれば、もう一方のモードも自動的に改善されるからです。
preview
デイトレードLarry Connors RSI2平均回帰戦略

デイトレードLarry Connors RSI2平均回帰戦略

Larry Connorsは著名なトレーダー兼著者であり、特に2期間RSI (RSI2)などのクオンツトレーディングや戦略で知られています。RSI2は短期的な買われすぎ・売られすぎの市場状況を識別するのに役立ちます。本記事では、まず私たちの研究の動機を説明し、その後Connorsの代表的な3つの戦略をMQL5で再現し、S&P 500指数CFDのデイトレードに適用していきます。
preview
MQL5での取引戦略の自動化(第23回):トレーリングとバスケットロジックによるゾーンリカバリ

MQL5での取引戦略の自動化(第23回):トレーリングとバスケットロジックによるゾーンリカバリ

この記事では、トレーリングストップとマルチバスケット取引機能を導入することで、ゾーンリカバリー(Zone Recovery)システムを強化します。改善されたアーキテクチャが、利益確定のために動的トレーリングストップをどのように活用し、複数の取引シグナルを効率的に処理するバスケット管理システムの使用方法を探ります。実装とバックテストを通じて、適応的な市場環境に対応するより堅牢な取引システムを実証します。
preview
知っておくべきMQL5ウィザードのテクニック(第25回):多時間枠のテストと取引

知っておくべきMQL5ウィザードのテクニック(第25回):多時間枠のテストと取引

アセンブリクラスで使用されているMQL5コードアーキテクチャの制限によって、複数の時間枠に基づく戦略は、デフォルトではウィザードで組み立てられたEAではテストできません。今回は、二次移動平均を使用したケーススタディで、複数の時間枠を使用する戦略について、この制限を回避する可能性を探ります。
preview
ニューラルネットワークが簡単に(第69回):密度に基づく行動方策の支持制約(SPOT)

ニューラルネットワークが簡単に(第69回):密度に基づく行動方策の支持制約(SPOT)

オフライン学習では、固定されたデータセットを使用するため、環境の多様性をカバーする範囲が制限されます。学習過程において、私たちのエージェントはこのデータセットを超える行動を生成することができます。環境からのフィードバックがなければ、そのような行動の評価が正しいとどうやって確信できるのでしょうか。訓練データセット内のエージェントの方策を維持することは、訓練の信頼性を確保するために重要な要素となります。これが、この記事でお話しする内容です。
preview
プライスアクション分析ツールキットの開発(第9回):External Flow

プライスアクション分析ツールキットの開発(第9回):External Flow

本稿では、高度な分析手法として外部ライブラリを活用する、新たなアプローチを紹介します。pandasのようなライブラリは、複雑なデータを処理・解釈するための強力なツールを提供し、トレーダーが市場の動向についてより深い洞察を得られるようにします。このようなテクノロジーを統合することで、生のデータと実用的な戦略との間にあるギャップを埋めることができます。この革新的なアプローチの基盤を築き、テクノロジーと取引の専門知識を融合させる可能性を引き出すために、ぜひご一緒に取り組んでいきましょう。
preview
知っておくべきMQL5ウィザードのテクニック(第14回):STFによる多目的時系列予測

知っておくべきMQL5ウィザードのテクニック(第14回):STFによる多目的時系列予測

データのモデリングに「空間」と「時間」の両方の測定基準を使用する空間的時間的融合は、主にリモートセンシングや、私たちの周囲をよりよく理解するための他の多くの視覚ベースの活動で有用です。発表された論文のおかげで、トレーダーへの可能性を検証することで、その活用に斬新なアプローチを取ります。