Artículos de programación MQL4 y MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional

Las Máquinas de Boltzmann Restringidas (Restricted Boltzmann Machines, RBMs) son un tipo de red neuronal desarrollada a mediados de la década de 1980, en una época en la que los recursos computacionales eran extremadamente costosos.. Desde sus inicios, se basó en el muestreo de Gibbs y la divergencia contrastiva para reducir la dimensionalidad o capturar las probabilidades y propiedades ocultas en los conjuntos de datos de entrenamiento. Analizamos cómo la retropropagación puede lograr un rendimiento similar cuando la RBM "incorpora" precios en un perceptrón multicapa para pronósticos.
preview
Implementación de los cierres parciales en MQL5

Implementación de los cierres parciales en MQL5

En este artículo se desarrolla una clase para gestionar cierres parciales en MQL5 y se integra dentro de un EA de order blocks. Además, se presentan pruebas de backtest comparando la estrategia con y sin parciales, analizando en qué condiciones su uso puede maximizar y asegurar beneficios. Concluimos que especialmente en estilos de trading orientados a movimientos más amplios, el uso de parciales podría ser beneficioso.
preview
Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores

Redes neuronales: así de sencillo (Parte 95): Reducción del consumo de memoria en los modelos de transformadores

Los modelos basados en la arquitectura de transformadores demuestran una gran eficacia, pero su uso se complica por el elevado coste de los recursos tanto en la fase de formación como durante el funcionamiento. En este artículo, propongo familiarizarse con los algoritmos que permiten reducir el uso de memoria de tales modelos.
preview
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 5)

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD (Parte 5)

El presente artículo supone la quinta parte de la serie que describe las etapas de desarrollo de un cliente MQL5 nativo para el protocolo MQTT 5.0. Hoy describiremos la estructura de los paquetes PUBLISH: cómo establecemos sus banderas de publicación (Publish Flags), codificamos cadenas de nombres de temas y establecemos IDs de paquetes cuando es necesario.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media

Aunque algunos conceptos pueden parecer sencillos a primera vista, ponerlos en práctica puede resultar bastante complicado. En el siguiente artículo, le guiaremos a través de nuestro innovador enfoque para automatizar un Asesor Experto (Expert Advisor, EA) que analiza hábilmente el mercado utilizando una estrategia de reversión a la media. Acompáñenos mientras desentrañamos las complejidades de este apasionante proceso de automatización.
preview
Introducción a MQL5 (Parte 12): Guía para principiantes sobre cómo crear indicadores personalizados

Introducción a MQL5 (Parte 12): Guía para principiantes sobre cómo crear indicadores personalizados

Aprenda a crear un indicador personalizado en MQL5. Con un enfoque basado en proyectos. Esta guía para principiantes cubre los buffers de indicadores, las propiedades y la visualización de tendencias, permitiéndole aprender paso a paso.
preview
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales

La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
preview
Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP

Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP

Concluimos nuestro análisis de la sensibilidad de la tasa de aprendizaje al rendimiento de los Asesores Expertos examinando principalmente las Tasas de Aprendizaje Adaptativo. Estas tasas de aprendizaje pretenden personalizarse para cada parámetro de una capa durante el proceso de entrenamiento, por lo que evaluamos los beneficios potenciales frente al peaje de rendimiento esperado.
preview
Encabezado en Connexus (Parte 3): Dominando el uso de encabezado HTTP para solicitudes WebRequest

Encabezado en Connexus (Parte 3): Dominando el uso de encabezado HTTP para solicitudes WebRequest

Continuamos desarrollando la biblioteca Connexus. En este capítulo, exploramos el concepto de cabeceras en el protocolo HTTP, explicando qué son, para qué sirven y cómo usarlos en las solicitudes. Cubrimos los principales encabezados utilizados en las comunicaciones con API y mostramos ejemplos prácticos de cómo configurarlos en la biblioteca.
preview
La estrategia comercial de captura de liquidez

La estrategia comercial de captura de liquidez

La estrategia de negociación basada en la captura de liquidez es un componente clave de Smart Money Concepts (SMC), que busca identificar y aprovechar las acciones de los actores institucionales en el mercado. Implica apuntar a áreas de alta liquidez, como zonas de soporte o resistencia, donde las órdenes grandes pueden desencadenar movimientos de precios antes de que el mercado reanude su tendencia. Este artículo explica en detalle el concepto de «liquidity grab» (captura de liquidez) y describe el proceso de desarrollo de la estrategia de negociación basada en la captura de liquidez en MQL5.
preview
Hibridación de algoritmos basados en poblaciones. Esquema secuencial y paralelo

Hibridación de algoritmos basados en poblaciones. Esquema secuencial y paralelo

En este artículo, nos sumergiremos en el mundo de la hibridación de algoritmos de optimización analizando tres tipos clave: la mezcla de estrategias y la hibridación secuencial y paralela. Asimismo, realizaremos una serie de experimentos combinando y probando los algoritmos de optimización correspondientes.
preview
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados

En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.
preview
Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5

Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5

En este artículo, analizamos el concepto de deformación dinámica del tiempo como medio para identificar patrones predictivos en series de tiempo financieras. Veremos cómo funciona y presentaremos su implementación en MQL5.
preview
Codificación ordinal para variables nominales

Codificación ordinal para variables nominales

En este artículo, analizamos y demostramos cómo convertir predictores nominales en formatos numéricos adecuados para algoritmos de aprendizaje automático, utilizando tanto Python como MQL5.
preview
Características del Wizard MQL5 que debe conocer (Parte 44): Indicador técnico Average True Range (ATR)

Características del Wizard MQL5 que debe conocer (Parte 44): Indicador técnico Average True Range (ATR)

El oscilador ATR es un indicador muy popular que actúa como proxy de volatilidad, especialmente en los mercados de divisas, donde los datos de volumen son escasos. Examinamos esto, basándonos en patrones, como hemos hecho con indicadores anteriores, y compartimos estrategias e informes de pruebas gracias a las clases y el ensamblaje de la biblioteca del asistente MQL5.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 10): Estrategia de Cruce Dorado y Cruce de la Muerte (EA)

Creación de un modelo de restricción de tendencia de velas (Parte 10): Estrategia de Cruce Dorado y Cruce de la Muerte (EA)

¿Sabías que el Cruce Dorado y el Cruce de la Muerte están entre las estrategias más fiables para detectar tendencias de mercado a largo plazo? Un Cruce Dorado señala una tendencia alcista cuando una media móvil corta cruza por encima de una más larga, mientras que un Cruce de la Muerte indica una tendencia bajista cuando la media corta cruza por debajo. A pesar de su sencillez y eficacia, aplicar estas estrategias manualmente suele llevar a perder oportunidades o a ejecutar operaciones con retraso.
preview
Aprendiendo MQL5 de principiante a profesional (Parte V): Operadores básicos para redirigir el flujo de comandos

Aprendiendo MQL5 de principiante a profesional (Parte V): Operadores básicos para redirigir el flujo de comandos

Este artículo trata de los operadores básicos para cambiar el flujo de ejecución: condiciones, ciclos y el operador switch. El uso de estos operadores añadirá la capacidad de que las funciones que creemos actúen de forma "inteligente".
preview
De Python a MQL5: Un viaje hacia los sistemas de trading inspirados en la cuántica

De Python a MQL5: Un viaje hacia los sistemas de trading inspirados en la cuántica

El artículo analiza el desarrollo de un sistema de negociación inspirado en la cuántica, pasando de un prototipo en Python a una implementación en MQL5 para la negociación en el mundo real. El sistema utiliza principios de computación cuántica, como la superposición y el entrelazamiento, para analizar los estados del mercado, aunque funciona en ordenadores clásicos utilizando simuladores cuánticos. Las características principales incluyen un sistema de tres qubits para analizar ocho estados del mercado simultáneamente, períodos de revisión de 24 horas y siete indicadores técnicos para el análisis del mercado. Aunque los índices de precisión puedan parecer modestos, proporcionan una ventaja significativa cuando se combinan con estrategias adecuadas de gestión de riesgos.
preview
DoEasy. Elementos de control (Parte 33): "ScrollBar" vertical

DoEasy. Elementos de control (Parte 33): "ScrollBar" vertical

En este artículo, continuaremos desarrollando los elementos gráficos de la librería DoEasy, y añadiremos el desplazamiento vertical de los controles del objeto formulario y algunas funciones y métodos útiles que serán necesarios más adelante.
preview
Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA

Filtrado de estacionalidad y período de tiempo para modelos de Deep Learning ONNX con Python para EA

¿Podemos beneficiarnos de la estacionalidad al crear modelos para Deep Learning con Python? ¿Ayuda el filtrado de datos para los modelos ONNX a obtener mejores resultados? ¿Qué periodo de tiempo debemos utilizar? Trataremos todo esto a lo largo de este artículo.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Redes neuronales en el trading: Transformador vectorial jerárquico (HiVT)

Hoy proponemos al lector introducir el método del transformador vectorial jerárquico (HiVT), desarrollado para la previsión rápida y precisa de series temporales multimodales.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 3): Visualización mejorada de datos

Integración de MQL5 con paquetes de procesamiento de datos (Parte 3): Visualización mejorada de datos

En este artículo, realizaremos una visualización de datos mejorada que va más allá de los gráficos básicos, incorporando características como interactividad, datos en capas y elementos dinámicos, lo que permite a los operadores explorar tendencias, patrones y correlaciones de manera más eficaz.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 5): Volatility Navigator EA

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 5): Volatility Navigator EA

Determinar la dirección del mercado puede ser sencillo, pero saber cuándo entrar puede resultar complicado. Como parte de la serie titulada «Desarrollo de un kit de herramientas para el análisis de la acción del precio», me complace presentar otra herramienta que proporciona puntos de entrada, niveles de toma de ganancias y colocación de órdenes stop loss. Para lograrlo, hemos utilizado el lenguaje de programación MQL5. Profundicemos en cada paso de este artículo.
preview
Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)

Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)

En este artículo explicaré gran parte de la clase C_ChartFloatingRAD. Esta es la encargada de hacer que Chart Trade funcione. Sin embargo, no terminaré la explicación aquí. La finalizaré en el próximo artículo, ya que el contenido de este es bastante denso y necesita ser comprendido a fondo. El contenido expuesto aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación cuya finalidad sea distinta a la enseñanza y el estudio de los conceptos mostrados.
preview
Características del Wizard MQL5 que debe conocer (Parte 24): Medias móviles

Características del Wizard MQL5 que debe conocer (Parte 24): Medias móviles

Las medias móviles son un indicador muy común que la mayoría de los operadores utilizan y comprenden. Exploramos posibles casos de uso menos comunes dentro de los Asesores Expertos disponibles en el Asistente de MQL5.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición

Aquí veremos cómo se pueden utilizar datos más fiables (ticks negociados) en el sistema de repetición, sin tener que preocuparnos necesariamente de si están ajustados o no.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)

En esta cuarta parte, revisamos los asesores expertos (EA) Simple Hedge y Simple Grid desarrollados anteriormente. Nuestro enfoque se centra en perfeccionar Simple Grid EA a través del análisis matemático y un enfoque de fuerza bruta, apuntando al uso óptimo de la estrategia. Este artículo profundiza en la optimización matemática de la estrategia, preparando el escenario para la futura exploración de la optimización basada en codificación en entregas posteriores.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

En el último artículo de nuestra serie, analizamos el framework Atom-Motif Contrastive Transformer (AMCT), que usa el aprendizaje contrastivo para identificar patrones clave a todos los niveles, desde los elementos básicos hasta las estructuras complejas. En este artículo, continuaremos con la implementación de los enfoques AMCT usando MQL5.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte XI): Cruce de medias móviles (II)

Reimaginando las estrategias clásicas en MQL5 (Parte XI): Cruce de medias móviles (II)

Las medias móviles y el oscilador estocástico podrían utilizarse para generar señales de trading que sigan la tendencia. Sin embargo, estas señales solo se observarán después de que se haya producido la acción del precio. Podemos superar eficazmente este retraso inherente a los indicadores técnicos utilizando la inteligencia artificial. Este artículo le enseñará cómo crear un asesor experto totalmente autónomo impulsado por IA de una manera que pueda mejorar cualquiera de sus estrategias de trading existentes. Incluso la estrategia comercial más antigua posible se puede mejorar.
preview
Desarrollo de un sistema de repetición (Parte 51): Esto complica las cosas (III)

Desarrollo de un sistema de repetición (Parte 51): Esto complica las cosas (III)

En este artículo comprenderás una de las cosas más complejas que existen en la programación MQL5: la forma correcta de obtener el ID del gráfico y por qué a veces los objetos no se trazan en él. El contenido expuesto aquí tiene como objetivo, pura y simplemente, ser didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Del básico al intermedio: Comandos BREAK y CONTINUE

Del básico al intermedio: Comandos BREAK y CONTINUE

En este artículo veremos cómo usar los comandos RETURN, BREAK y CONTINUE dentro de un bucle. Entender lo que cada uno de estos comandos hace en el flujo de ejecución de un bucle es algo muy importante para que puedas trabajar con aplicaciones más elaboradas. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos presentados.
preview
Automatización de estrategias de trading en MQL5 (Parte 2): El sistema Kumo Breakout con Ichimoku y Awesome Oscillator

Automatización de estrategias de trading en MQL5 (Parte 2): El sistema Kumo Breakout con Ichimoku y Awesome Oscillator

En este artículo, creamos un Asesor Experto (EA) que automatiza la estrategia Kumo Breakout utilizando el indicador Ichimoku Kinko Hyo y el Awesome Oscillator. Recorremos el proceso de inicialización de los indicadores, detección de condiciones de ruptura y codificación de entradas y salidas automáticas en las operaciones. Además, implementamos trailing stops y lógica de gestión de posiciones para mejorar el rendimiento del EA y su adaptabilidad a las condiciones del mercado.
preview
Redes neuronales: así de sencillo (Parte 55): Control interno contrastado (CIC)

Redes neuronales: así de sencillo (Parte 55): Control interno contrastado (CIC)

El aprendizaje contrastivo (Contrastive learning) supone un método de aprendizaje de representación no supervisado. Su objetivo consiste en entrenar un modelo para que destaque las similitudes y diferencias entre los conjuntos de datos. En este artículo, hablaremos del uso de enfoques de aprendizaje contrastivo para investigar las distintas habilidades del Actor.
preview
Del básico al intermedio: Comando IF ELSE

Del básico al intermedio: Comando IF ELSE

En este artículo veremos cómo trabajar con el comando IF y su compañero ELSE. Este es el comando más importante y significativo que existe en cualquier lenguaje de programación. Sin embargo, aunque es muy sencillo de usar, a veces genera cierta confusión cuando nos falta experiencia en su uso y en los conceptos asociados. El contenido expuesto aquí tiene como objetivo exclusivamente la enseñanza didáctica. En ningún caso debe considerarse como una aplicación destinada a otro fin que no sea el aprendizaje y estudio de los conceptos presentados.
preview
Redes neuronales en el trading: Agente con memoria multinivel (Final)

Redes neuronales en el trading: Agente con memoria multinivel (Final)

Continuamos el trabajo iniciado de creación del framework FinMem, que utiliza enfoques de memoria multinivel que imitan los procesos cognitivos humanos. Esto permite al modelo no solo procesar eficazmente datos financieros complejos, sino también adaptarse a nuevas señales, mejorando sustancialmente la precisión y eficacia de las decisiones de inversión en mercados que cambian dinámicamente.
preview
DoEasy. Elementos de control (Parte 17): Recortando partes invisibles de objetos, objetos WinForms auxiliares de botón con flechas

DoEasy. Elementos de control (Parte 17): Recortando partes invisibles de objetos, objetos WinForms auxiliares de botón con flechas

En el artículo, crearemos la funcionalidad necesaria para ocultar secciones de objetos que quedan más allá de su contenedor; asimismo, crearemos objetos de botón auxiliares con flechas para usarlos como parte de otros objetos WinForms.
preview
Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida

La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.
preview
Algoritmo de optimización de Escalera Real - Royal Flush Optimisation (RFO)

Algoritmo de optimización de Escalera Real - Royal Flush Optimisation (RFO)

El algoritmo Royal Flush Optimization del autor ofrece una nueva perspectiva en la resolución de problemas de optimización sustituyendo la clásica codificación binaria de los algoritmos genéticos por un enfoque basado en sectores e inspirado en los principios del póquer. El RFO demuestra cómo la simplificación de los principios básicos puede dar lugar a un método de optimización eficaz y práctico. El artículo presenta un análisis detallado del algoritmo y los resultados de las pruebas.
preview
El papel de la calidad del generador de números aleatorios en la eficiencia de los algoritmos de optimización

El papel de la calidad del generador de números aleatorios en la eficiencia de los algoritmos de optimización

En este artículo, analizaremos el generador de números aleatorios Mersenne Twister y lo compararemos con el estándar en MQL5. También determinaremos la influencia de la calidad del generador de números aleatorios en los resultados de los algoritmos de optimización.
preview
Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

Redes neuronales en el trading: Red neuronal espacio-temporal (STNN)

En este artículo, hablaremos sobre el uso de transformaciones espacio-temporales para predecir el próximo movimiento de los precios de manera eficaz. Para mejorar la precisión de la predicción numérica en el STNN, hemos propuesto un mecanismo de atención continua que permite al modelo considerar en mayor medida aspectos importantes de los datos.