Artikel über die Automatisierung von Handelssystemen in MQL5

icon

Lesen Sie Artikel über Handelssysteme, in denen unterschiedlichste Ideen vorgestellt sind. Sie erfahren, wie man   statistische Methoden und Muster auf japanischen Kerzen verwendet, wie man Signale filtern kann und wofür man Semaphor-Indikatoren braucht.

Mit dem Meister MQL5 lernen Sie, wie man einen Roboter ohne Programmieren zur schnellen Überprüfung von Handelsideen erstellen kann sowie was genetische Algorithmen sind.

Neuer Artikel
letzte | beste
preview
Developing a Replay System — Market simulation (Part 13): Die Geburt des SIMULATORS (III)

Developing a Replay System — Market simulation (Part 13): Die Geburt des SIMULATORS (III)

Hier werden wir einige Elemente im Zusammenhang mit der Arbeit im nächsten Artikel vereinfachen. Ich erkläre auch, wie Sie sich vorstellen können, was der Simulator in Bezug auf die Zufälligkeit erzeugt.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 09): K-Means-Clustering mit fraktalen Wellen

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 09): K-Means-Clustering mit fraktalen Wellen

Das K-Means-Clustering verfolgt den Ansatz, Datenpunkte als einen Prozess zu gruppieren, der sich zunächst auf die Makroansicht eines Datensatzes konzentriert und zufällig generierte Clusterzentren verwendet, bevor er heranzoomt und diese Zentren anpasst, um den Datensatz genau darzustellen. Wir werden uns dies ansehen und einige Anwendungsfälle ausnutzen.
preview
MQL5-Integration: Python

MQL5-Integration: Python

Python ist eine bekannte und beliebte Programmiersprache mit vielen Funktionen, insbesondere in den Bereichen Finanzen, Datenwissenschaft, künstliche Intelligenz und maschinelles Lernen. Python ist ein leistungsfähiges Werkzeug, das auch beim Handel nützlich sein kann. MQL5 ermöglicht es uns, diese leistungsstarke Sprache als Integration zu nutzen, um unsere Ziele effektiv zu erreichen. In diesem Artikel erfahren Sie, wie Sie Python in MQL5 integrieren und verwenden können, nachdem Sie einige grundlegende Informationen über Python gelernt haben.
preview
Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 04): Anpassung der Einstellungen (II)

Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 04): Anpassung der Einstellungen (II)

Lassen Sie uns mit der Entwicklung des Systems und der Kontrollen fortfahren. Ohne die Möglichkeit, den Dienst zu kontrollieren, ist es schwierig, Fortschritte zu machen und das System zu verbessern.
preview
Klassische Strategien neu interpretieren (Teil XI): Kreuzung gleitender Durchschnitte (II)

Klassische Strategien neu interpretieren (Teil XI): Kreuzung gleitender Durchschnitte (II)

Die gleitenden Durchschnitte und der Stochastik-Oszillator können verwendet werden, um trendfolgende Handelssignale zu generieren. Diese Signale werden jedoch erst nach dem Eintreten der Preisaktion beobachtet. Diese den technischen Indikatoren innewohnende Verzögerung können wir mit Hilfe von KI wirksam überwinden. In diesem Artikel erfahren Sie, wie Sie einen vollständig autonomen KI-gesteuerten Expert Advisor erstellen, der Ihre bestehenden Handelsstrategien verbessern kann. Selbst die älteste mögliche Handelsstrategie kann verbessert werden.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 27): Der Zukunft entgegen (II)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 27): Der Zukunft entgegen (II)

Gehen wir nun zu einem vollständigeren Auftragssystem direkt auf dem Chart über. In diesem Artikel zeige ich einen Weg, das Auftragssystem zu reparieren, oder besser gesagt, es intuitiver zu gestalten.
preview
Neuronale Netze sind einfach (Teil 59): Dichotomy of Control (DoC)

Neuronale Netze sind einfach (Teil 59): Dichotomy of Control (DoC)

Im vorigen Artikel haben wir uns mit dem Decision Transformer vertraut gemacht. Das komplexe stochastische Umfeld des Devisenmarktes erlaubte es uns jedoch nicht, das Potenzial der vorgestellten Methode voll auszuschöpfen. In diesem Artikel werde ich einen Algorithmus vorstellen, der die Leistung von Algorithmen in stochastischen Umgebungen verbessern soll.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 23): Neues Auftragssystems (VI)

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 23): Neues Auftragssystems (VI)

Wir werden das Auftragssystem flexibler gestalten. Hier werden wir Änderungen am Code in Erwägung ziehen, die ihn flexibler machen, sodass wir die Positionsstopp-Levels viel schneller ändern können.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 08): Perceptrons

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 08): Perceptrons

Perceptrons, Netze mit einer einzigen ausgeblendeten Schicht, sind ein guter Einstieg für alle, die mit den Grundlagen des automatisierten Handels vertraut sind und sich mit neuronalen Netzen vertraut machen wollen. Wir sehen uns Schritt für Schritt an, wie dies in einer Signalklassen-Assembly realisiert werden könnte, die Teil der MQL5 Wizard-Klassen für Expert Advisors ist.
preview
Permutieren von Preisbalken in MQL5

Permutieren von Preisbalken in MQL5

In diesem Artikel stellen wir einen Algorithmus zur Permutation von Preisbalken vor und erläutern, wie Permutationstests verwendet werden können, um Fälle zu erkennen, in denen die Leistung einer Strategie gefälscht wurde, um potenzielle Käufer von Expert Advisors zu täuschen.
preview
Praktische Entwicklung von Handelsstrategien

Praktische Entwicklung von Handelsstrategien

In diesem Artikel werden wir versuchen, unsere eigene Handelsstrategie zu entwickeln. Jede Handelsstrategie muss auf einer Art statistischem Vorteil beruhen. Außerdem sollte dieser Vorteil noch lange Zeit bestehen.
preview
Risikomanager für den manuellen Handel

Risikomanager für den manuellen Handel

In diesem Artikel wird detailliert beschrieben, wie man eine Risikomanager-Klasse für den manuellen Handel von Grund auf schreibt. Diese Klasse kann auch als Basisklasse für die Vererbung durch algorithmische Händler verwendet werden, die automatisierte Programme einsetzen.
preview
Lernen Sie, wie man ein Handelssystem mit Bill Williams' MFI entwickelt

Lernen Sie, wie man ein Handelssystem mit Bill Williams' MFI entwickelt

Dies ist ein neuer Artikel in der Serie, in der wir lernen, wie man ein Handelssystem auf der Grundlage beliebter technischer Indikatoren entwickelt. Dieses Mal werden wir den Market Facilitation Index von Bill Williams (BW MFI) besprechen.
preview
Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 2): USDJPY Scalping Strategie

Erstellen von selbstoptimierenden Expertenberatern in MQL5 (Teil 2): USDJPY Scalping Strategie

Seien Sie dabei, wenn wir uns heute der Herausforderung stellen, eine Handelsstrategie rund um das USDJPY-Paar zu entwickeln. Wir handeln Kerzenmuster, die auf dem täglichen Zeitrahmen gebildet werden, weil sie potenziell mehr Kraft hinter sich haben. Unsere anfängliche Strategie war gewinnbringend, was uns ermutigte, die Strategie weiter zu verfeinern und zusätzliche Sicherheitsschichten hinzuzufügen, um das gewonnene Kapital zu schützen.
preview
Datenwissenschaft und maschinelles Lernen (Teil 17): Geld von Bäumen? Die Kunst und Wissenschaft der Random Forests im Devisenhandel

Datenwissenschaft und maschinelles Lernen (Teil 17): Geld von Bäumen? Die Kunst und Wissenschaft der Random Forests im Devisenhandel

Entdecken Sie die Geheimnisse der algorithmischen Alchemie, während wir Sie durch die Mischung aus Kunstfertigkeit und Präzision bei der Entschlüsselung von Finanzlandschaften führen. Entdecken Sie, wie Random Forests Daten in Vorhersagefähigkeiten umwandeln und eine einzigartige Perspektive für die Navigation auf dem komplexen Terrain der Aktienmärkte bieten. Begleiten Sie uns auf dieser Reise in das Herz der Finanzmagie, wo wir die Rolle von Random Forests bei der Gestaltung des Marktgeschehens entmystifizieren und die Türen zu lukrativen Gelegenheiten aufschließen
preview
Neuronale Netze leicht gemacht (Teil 75): Verbesserung der Leistung von Modellen zur Vorhersage einer Trajektorie

Neuronale Netze leicht gemacht (Teil 75): Verbesserung der Leistung von Modellen zur Vorhersage einer Trajektorie

Die Modelle, die wir erstellen, werden immer größer und komplexer. Dies erhöht nicht nur die Kosten für ihr Training, sondern auch für ihren Betrieb. Die Zeit, die für eine Entscheidung benötigt wird, ist jedoch oft entscheidend. In diesem Zusammenhang sollten wir Methoden zur Optimierung der Modellleistung ohne Qualitätseinbußen in Betracht ziehen.
preview
Neuronale Netze leicht gemacht (Teil 57): Stochastic Marginal Actor-Critic (SMAC)

Neuronale Netze leicht gemacht (Teil 57): Stochastic Marginal Actor-Critic (SMAC)

Hier werde ich den relativ neuen Algorithmus Stochastic Marginal Actor-Critic (SMAC) vorstellen, der es ermöglicht, Strategien mit latenten Variablen im Rahmen der Entropiemaximierung zu entwickeln.
preview
Neuronale Netze im Handel: Praktische Ergebnisse der Methode TEMPO

Neuronale Netze im Handel: Praktische Ergebnisse der Methode TEMPO

Wir beschäftigen uns weiter mit TEMPO. In diesem Artikel werden wir die tatsächliche Wirksamkeit der vorgeschlagenen Ansätze anhand realer historischer Daten bewerten.
preview
Statistische Arbitrage mit Vorhersagen

Statistische Arbitrage mit Vorhersagen

Wir werden uns mit statistischer Arbitrage beschäftigen, wir werden mit Python nach Korrelations- und Kointegrationssymbolen suchen, wir werden einen Indikator für den Pearson-Koeffizienten erstellen und wir werden einen EA für den Handel mit statistischer Arbitrage mit Vorhersagen erstellen, die mit Python und ONNX-Modellen gemacht werden.
preview
Kategorientheorie in MQL5 (Teil 17): Funktoren und Monoide

Kategorientheorie in MQL5 (Teil 17): Funktoren und Monoide

Dieser Artikel, der letzte in unserer Reihe zum Thema Funktoren, befasst sich erneut mit Monoiden als Kategorie. Monoide, die wir in dieser Serie bereits vorgestellt haben, werden hier zusammen mit mehrschichtigen Perceptrons zur Unterstützung der Positionsbestimmung verwendet.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 2): Übergang zu virtuellen Positionen von Handelsstrategien

Lassen Sie uns mit der Entwicklung eines Multiwährungs-EAs mit mehreren parallel arbeitenden Strategien fortfahren. Versuchen wir, die gesamte mit der Eröffnung von Marktpositionen verbundene Arbeit von der Strategieebene auf die Ebene des EA zu verlagern, der die Strategien verwaltet. Die Strategien selbst werden nur virtuell gehandelt, ohne Marktpositionen zu eröffnen.
preview
Aufbau eines Modells aus Kerzen, Trend und Nebenbedingungen (Teil 3): Erkennung von Trendänderungen bei der Verwendung dieses Systems

Aufbau eines Modells aus Kerzen, Trend und Nebenbedingungen (Teil 3): Erkennung von Trendänderungen bei der Verwendung dieses Systems

In diesem Artikel wird untersucht, wie Wirtschaftsnachrichten, das Anlegerverhalten und verschiedene Faktoren die Trendumkehr an den Märkten beeinflussen können. Es enthält eine Videoerklärung und fährt fort mit der Integration von MQL5-Code in unser Programm, um Trendumkehrungen zu erkennen, uns zu warnen und geeignete Maßnahmen auf der Grundlage der Marktbedingungen zu ergreifen. Dieser Artikel knüpft an frühere Artikel der Reihe an.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil II)

Aufbau des Kerzenmodells Trend-Constraint (Teil 5): Nachrichtensystem (Teil II)

Heute besprechen wir eine funktionierende Telegram-Integration für MetaTrader 5 Indikator-Benachrichtigungen, die die Leistungsfähigkeit von MQL5 in Zusammenarbeit mit Python und der Telegram Bot API nutzt. Wir werden alles im Detail erklären, damit niemand etwas verpasst. Am Ende dieses Projekts werden Sie wertvolle Erkenntnisse gewonnen haben, die Sie in Ihren Projekten anwenden können.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 1): Senden von Nachrichten von MQL5 an Telegram

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 1): Senden von Nachrichten von MQL5 an Telegram

In diesem Artikel erstellen wir einen Expert Advisor (EA) in MQL5, um mit einem Bot Nachrichten an Telegram zu senden. Wir richten die erforderlichen Parameter ein, einschließlich des API-Tokens und der Chat-ID des Bots, und führen dann eine HTTP-POST-Anforderung aus, um die Nachrichten zu übermitteln. Später kümmern wir uns um die Beantwortung der Fragen, um eine erfolgreiche Zustellung zu gewährleisten, und beheben alle Probleme, die im Falle eines Fehlers auftreten. Dies stellt sicher, dass wir Nachrichten von MQL5 an Telegram über den erstellten Bot senden.
preview
Neuronale Netze leicht gemacht (Teil 93): Adaptive Vorhersage im Frequenz- und Zeitbereich (letzter Teil)

Neuronale Netze leicht gemacht (Teil 93): Adaptive Vorhersage im Frequenz- und Zeitbereich (letzter Teil)

In diesem Artikel setzen wir die Umsetzung der Ansätze des ATFNet-Modells fort, das die Ergebnisse von 2 Blöcken (Frequenz und Zeit) innerhalb der Zeitreihenprognose adaptiv kombiniert.
preview
Handelsstrategie kaskadierender Aufträge basierend auf EMA Crossovers für MetaTrader 5

Handelsstrategie kaskadierender Aufträge basierend auf EMA Crossovers für MetaTrader 5

Der Artikel demonstriert einen automatisierten Algorithmus, der auf dem Kreuzen von EMAs für MetaTrader 5 basiert. Detaillierte Informationen zu allen Aspekten der Demonstration eines Expert Advisors in MQL5 und dem Testen in MetaTrader 5 - von der Analyse des Preisbereichsverhaltens bis zum Risikomanagement.
preview
Erstellen eines MQL5 Expert Advisors basierend auf der PIRANHA Strategie unter Verwendung von Bollinger Bändern

Erstellen eines MQL5 Expert Advisors basierend auf der PIRANHA Strategie unter Verwendung von Bollinger Bändern

In diesem Artikel erstellen wir einen Expert Advisor (EA) in MQL5, der auf der PIRANHA-Strategie basiert und Bollinger-Bänder zur Verbesserung der Handelseffektivität nutzt. Wir erörtern die Grundprinzipien der Strategie, die kodierte Umsetzung und die Methoden zur Prüfung und Optimierung. Dieses Wissen ermöglicht es Ihnen, den EA in Ihren Handelsszenarien effektiv einzusetzen
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 46): Ichimoku

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 46): Ichimoku

Der Ichimuko Kinko Hyo ist ein bekannter japanischer Indikator, der als Trenderkennungssystem dient. Wir untersuchen dies, wie schon in früheren ähnlichen Artikeln, Muster für Muster und bewerten auch die Strategien und Testberichte mit Hilfe der MQL5-Assistentenbibliothek Klassen und Assembly.
preview
Einführung in MQL5 (Teil 10): Eine Anleitung für Anfänger zur Arbeit mit den integrierten Indikatoren in MQL5

Einführung in MQL5 (Teil 10): Eine Anleitung für Anfänger zur Arbeit mit den integrierten Indikatoren in MQL5

Dieser Artikel führt in die Arbeit mit integrierten Indikatoren in MQL5 ein und konzentriert sich auf die Erstellung eines RSI-basierten Expert Advisors (EA) mit einem projektbasierten Ansatz. Sie werden lernen, RSI-Werte abzurufen und zu nutzen, Liquiditätsdurchbrüche zu handhaben und die Handelsvisualisierung mit Chart-Objekten zu verbessern. Darüber hinaus wird in dem Artikel ein wirksames Risikomanagement hervorgehoben, einschließlich der Festlegung eines prozentualen Risikos, der Umsetzung von Risiko-Ertrags-Verhältnissen und der Anwendung von Risikomodifikationen zur Sicherung von Gewinnen.
preview
Kausalschluss in den Problemen bei Zeitreihenklassifizierungen

Kausalschluss in den Problemen bei Zeitreihenklassifizierungen

In diesem Artikel werden wir uns mit der Theorie des Kausalschlusses unter Verwendung von maschinellem Lernen sowie mit der Implementierung des nutzerdefinierten Ansatzes in Python befassen. Kausalschlüsse und kausales Denken haben ihre Wurzeln in der Philosophie und Psychologie und spielen eine wichtige Rolle für unser Verständnis der Realität.
preview
Entwicklung eines Replay System (Teil 26): Expert Advisor Projekt — die Klasse C_Terminal

Entwicklung eines Replay System (Teil 26): Expert Advisor Projekt — die Klasse C_Terminal

Wir können nun mit der Erstellung eines Expert Advisors für die Verwendung im Wiedergabe-/Simulationssystem beginnen. Wir brauchen jedoch eine Verbesserung und keine zufällige Lösung. Trotzdem sollten wir uns von der anfänglichen Komplexität nicht einschüchtern lassen. Es ist wichtig, irgendwo anzufangen, sonst enden wir damit, dass wir über die Schwierigkeit einer Aufgabe grübeln, ohne überhaupt zu versuchen, sie zu bewältigen. Genau darum geht es beim Programmieren: Hindernisse durch Lernen, Testen und umfassende Forschung zu überwinden.
preview
Mehrschichtiges Perzeptron und Backpropagation-Algorithmus (Teil 3): Integration mit dem Strategy Tester - Überblick (I).

Mehrschichtiges Perzeptron und Backpropagation-Algorithmus (Teil 3): Integration mit dem Strategy Tester - Überblick (I).

Das mehrschichtige Perzeptron ist eine Weiterentwicklung des einfachen Perzeptrons, das nichtlineare separierbare Probleme lösen kann. Zusammen mit dem Backpropagation-Algorithmus kann dieses neuronale Netz effektiv trainiert werden. In Teil 3 der Serie Multilayer Perceptron und Backpropagation werden wir sehen, wie man diese Technik in den Strategy Tester integriert. Diese Integration ermöglicht die Nutzung komplexer Datenanalysen, um bessere Entscheidungen zur Optimierung Ihrer Handelsstrategien zu treffen. In diesem Artikel werden wir die Vorteile und Probleme dieser Technik erörtern.
preview
Entwicklung eines Replay System (Teil 29): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Entwicklung eines Replay System (Teil 29): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Nachdem wir die Klasse C_Mouse verbessert haben, können wir uns auf die Erstellung einer Klasse konzentrieren, die einen völlig neuen Rahmen für unsere Analyse schaffen soll. Wir werden weder Vererbung noch Polymorphismus verwenden, um diese neue Klasse zu erstellen. Stattdessen werden wir die Preislinie ändern, oder besser gesagt, neue Objekte hinzufügen. Genau das werden wir in diesem Artikel tun. In der nächsten Ausgabe werden wir uns ansehen, wie man die Analyse ändern kann. All dies geschieht, ohne den Code der Klasse C_Mouse zu ändern. Nun, eigentlich wäre es einfacher, dies durch Vererbung oder Polymorphismus zu erreichen. Es gibt jedoch auch andere Methoden, um das gleiche Ergebnis zu erzielen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 10). Die unkonventionelle RBM

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 10). Die unkonventionelle RBM

Restriktive Boltzmann-Maschinen (RBM) sind im Grunde genommen ein zweischichtiges neuronales Netz, das durch Dimensionsreduktion eine unbeaufsichtigte Klassifizierung ermöglicht. Wir nehmen die Grundprinzipien und untersuchen, ob wir durch eine unorthodoxe Umgestaltung und ein entsprechendes Training einen nützlichen Signalfilter erhalten können.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 38): Bollinger Bands

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 38): Bollinger Bands

Bollinger Bänder sind ein sehr gebräuchlicher Hüllkurven-Indikator, der von vielen Händlern verwendet wird, um Trades manuell zu platzieren und zu schließen. Wir untersuchen diesen Indikator, indem wir möglichst viele der verschiedenen möglichen Signale betrachten, die er erzeugt, und sehen, wie sie in einem von einem Assistenten zusammengestellten Expert Advisor verwendet werden können.
preview
Entwicklung eines Replay Systems (Teil 43): Chart Trader Projekt (II)

Entwicklung eines Replay Systems (Teil 43): Chart Trader Projekt (II)

Die meisten Menschen, die programmieren lernen wollen oder davon träumen, haben eigentlich keine Ahnung, was sie da tun. Ihre Tätigkeit besteht darin, dass sie versuchen, Dinge auf eine bestimmte Art und Weise zu schaffen. Bei der Programmierung geht es jedoch nicht darum, geeignete Lösungen zu finden. Auf diese Weise können mehr Probleme als Lösungen entstehen. Hier werden wir etwas Fortgeschritteneres und daher etwas anderes machen.
preview
Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5

Datenwissenschaft und maschinelles Lernen (Teil 20): Algorithmische Handelseinblicke, eine Gegenüberstellung von LDA und PCA in MQL5

Entdecken Sie die Geheimnisse dieser leistungsstarken Dimensionsreduktionstechniken, indem wir ihre Anwendungen in der MQL5-Handelsumgebung analysieren. Vertiefen Sie sich in die Feinheiten der linearen Diskriminanzanalyse (LDA) und der Hauptkomponentenanalyse (PCA) und gewinnen Sie ein tiefes Verständnis für deren Auswirkungen auf die Strategieentwicklung und Marktanalyse,
preview
Chaostheorie im Handel (Teil 2): Tiefer tauchen

Chaostheorie im Handel (Teil 2): Tiefer tauchen

Wir setzen unsere Untersuchung der Chaostheorie auf den Finanzmärkten fort. Dieses Mal werde ich seine Anwendbarkeit auf die Analyse von Währungen und anderen Vermögenswerten untersuchen.
preview
Neuronale Netze leicht gemacht (Teil 77): Cross-Covariance Transformer (XCiT)

Neuronale Netze leicht gemacht (Teil 77): Cross-Covariance Transformer (XCiT)

In unseren Modellen verwenden wir häufig verschiedene Aufmerksamkeitsalgorithmen. Und am häufigsten verwenden wir wahrscheinlich Transformers. Ihr größter Nachteil ist der Ressourcenbedarf. In diesem Artikel wird ein neuer Algorithmus vorgestellt, der dazu beitragen kann, die Rechenkosten ohne Qualitätseinbußen zu senken.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 3): Überarbeitung der Architektur

Wir haben bereits einige Fortschritte bei der Entwicklung eines Mehrwährungs-EAs mit mehreren parallel arbeitenden Strategien gemacht. In Anbetracht der gesammelten Erfahrungen sollten wir die Architektur unserer Lösung überprüfen und versuchen, sie zu verbessern, bevor wir zu weit vorpreschen.