Artikel über die Automatisierung von Handelssystemen in MQL5

icon

Lesen Sie Artikel über Handelssysteme, in denen unterschiedlichste Ideen vorgestellt sind. Sie erfahren, wie man   statistische Methoden und Muster auf japanischen Kerzen verwendet, wie man Signale filtern kann und wofür man Semaphor-Indikatoren braucht.

Mit dem Meister MQL5 lernen Sie, wie man einen Roboter ohne Programmieren zur schnellen Überprüfung von Handelsideen erstellen kann sowie was genetische Algorithmen sind.

Neuer Artikel
letzte | beste
preview
Neuronale Netze leicht gemacht (Teil 63): Unüberwachtes Pretraining für Decision Transformer (PDT)

Neuronale Netze leicht gemacht (Teil 63): Unüberwachtes Pretraining für Decision Transformer (PDT)

Wir setzen die Diskussion über die Familie der Entscheidungstransformationsmethoden fort. In einem früheren Artikel haben wir bereits festgestellt, dass das Training des Transformators, der der Architektur dieser Methoden zugrunde liegt, eine ziemlich komplexe Aufgabe ist und einen großen gekennzeichneten Datensatz für das Training erfordert. In diesem Artikel wird ein Algorithmus zur Verwendung von ungekennzeichneten Trajektorien für das vorläufige Modelltraining vorgestellt.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 3): Hinzufügen von Symbolpräfixen und/oder -suffixen und der Handelszeiten

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 3): Hinzufügen von Symbolpräfixen und/oder -suffixen und der Handelszeiten

Mehrere Handelskollegen schickten E-Mails oder äußerten sich dazu, wie man diesen Multi-Currency EA bei Brokern mit Symbolnamen mit Präfixen und/oder Suffixen verwenden kann, und auch dazu, wie man Handelszeitzonen oder Handelszeitsitzungen bei diesem Multi-Currency EA implementiert.
preview
Neuinterpretation klassischer Strategien in Python: Das Kreuzen von MAs

Neuinterpretation klassischer Strategien in Python: Das Kreuzen von MAs

In diesem Artikel wird die klassische Kreuzungsstrategie von gleitenden Durchschnitten erneut untersucht, um ihre aktuelle Wirksamkeit zu bewerten. Angesichts der langen Zeit, die seit ihrer Einführung vergangen ist, untersuchen wir die potenziellen Verbesserungen, die KI für diese traditionelle Handelsstrategie bringen kann. Durch den Einsatz von KI-Techniken wollen wir fortschrittliche Vorhersagefähigkeiten nutzen, um Einstiegs- und Ausstiegspunkte für den Handel zu optimieren, sich an unterschiedliche Marktbedingungen anzupassen und die Gesamtperformance im Vergleich zu herkömmlichen Ansätzen zu verbessern.
preview
Die Kreuzvalidierung und die Grundlagen der kausalen Inferenz in CatBoost-Modellen, Export ins ONNX-Format

Die Kreuzvalidierung und die Grundlagen der kausalen Inferenz in CatBoost-Modellen, Export ins ONNX-Format

In dem Artikel wird eine Methode zur Erstellung von Bots durch maschinelles Lernen vorgeschlagen.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 7): Auswahl einer Gruppe auf der Grundlage der Vorwärtsperiode

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 7): Auswahl einer Gruppe auf der Grundlage der Vorwärtsperiode

Zuvor haben wir die Auswahl einer Gruppe von Handelsstrategie-Instanzen mit dem Ziel, die Ergebnisse ihrer gemeinsamen Operation zu verbessern, nur für den gleichen Zeitraum bewertet, in dem die Optimierung der einzelnen Instanzen durchgeführt wurde. Mal sehen, was in der Vorwärtsperiode passiert.
preview
MQL5 Handels-Toolkit (Teil 1): Entwicklung einer EX5-Bibliothek zur Positionsverwaltung

MQL5 Handels-Toolkit (Teil 1): Entwicklung einer EX5-Bibliothek zur Positionsverwaltung

Lernen Sie, wie Sie ein Entwickler-Toolkit für die Verwaltung verschiedener Positionsoperationen mit MQL5 erstellen können. In diesem Artikel zeige ich Ihnen, wie Sie eine Funktionsbibliothek (ex5) erstellen können, die einfache bis fortgeschrittene Positionsverwaltungsoperationen durchführt, einschließlich der automatischen Behandlung und Meldung der verschiedenen Fehler, die bei der Bearbeitung von Positionsverwaltungsaufgaben mit MQL5 auftreten.
preview
Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz neuronaler Netze im Handel.
preview
Neuronale Netze leicht gemacht (Teil 53): Aufteilung der Belohnung

Neuronale Netze leicht gemacht (Teil 53): Aufteilung der Belohnung

Wir haben bereits mehrfach darüber gesprochen, wie wichtig die richtige Wahl der Belohnungsfunktion ist, mit der wir das gewünschte Verhalten des Agenten anregen, indem wir Belohnungen oder Bestrafungen für einzelne Aktionen hinzufügen. Aber die Frage nach der Entschlüsselung unserer Signale durch den Agenten bleibt offen. In diesem Artikel geht es um die Aufteilung der Belohnung im Sinne der Übertragung einzelner Signale an den trainierten Agenten.
preview
Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil I): Erzeugungsmuster

Entwurfsmuster in der Softwareentwicklung und MQL5 (Teil I): Erzeugungsmuster

Es gibt Methoden, mit denen sich viele Probleme lösen lassen, die sich ständig wiederholen. Wenn Sie einmal verstanden haben, wie man diese Methoden anwendet, kann es sehr hilfreich sein, Ihre Software effektiv zu erstellen und das Konzept von DRY (Do not Repeat Yourself) anzuwenden. In diesem Zusammenhang eignet sich das Thema Entwurfsmuster sehr gut, da es sich um Muster handelt, die Lösungen für gut beschriebene und wiederkehrende Probleme bieten.
preview
Neuronale Netze leicht gemacht (Teil 58): Decision Transformer (DT)

Neuronale Netze leicht gemacht (Teil 58): Decision Transformer (DT)

Wir setzen das Studium der Methoden des Reinforcement Learning bzw. des Verstärkungslernens fort. In diesem Artikel werde ich mich auf einen etwas anderen Algorithmus konzentrieren, der die Politik des Agenten im Paradigma der Konstruktion einer Sequenz von Aktionen betrachtet.
preview
Kategorientheorie in MQL5 (Teil 19): Induktion natürlicher Quadrate

Kategorientheorie in MQL5 (Teil 19): Induktion natürlicher Quadrate

Wir setzen unseren Blick auf natürliche Transformationen fort, indem wir die Induktion natürlicher Quadrate besprechen. Leichte Einschränkungen bei der Implementierung von Mehrfachwährungen für Experten, die mit dem MQL5-Assistenten zusammengestellt wurden, bedeuten, dass wir unsere Fähigkeiten zur Datenklassifizierung mit einem Skript demonstrieren. Die wichtigsten Anwendungen sind die Klassifizierung von Preisänderungen und damit deren Vorhersage.
preview
Kategorientheorie in MQL5 (Teil 18): Natürliches Quadrat (Naturality Square)

Kategorientheorie in MQL5 (Teil 18): Natürliches Quadrat (Naturality Square)

In diesem Artikel setzen wir unsere Reihe zur Kategorientheorie fort, indem wir natürliche Transformationen, eine der wichtigsten Säulen des Fachs, vorstellen. Wir befassen uns mit der scheinbar komplexen Definition und gehen dann auf Beispiele und Anwendungen dieser Serie ein: Volatilitätsprognosen.
preview
Neuronale Netze leicht gemacht (Teil 72): Entwicklungsvorhersage in verrauschten Umgebungen

Neuronale Netze leicht gemacht (Teil 72): Entwicklungsvorhersage in verrauschten Umgebungen

Die Qualität der Vorhersage zukünftiger Zustände spielt eine wichtige Rolle bei der Methode des Goal-Conditioned Predictive Coding, die wir im vorherigen Artikel besprochen haben. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, der die Vorhersagequalität in stochastischen Umgebungen, wie z. B. den Finanzmärkten, erheblich verbessern kann.
preview
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 02): Kohonen-Karten

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 02): Kohonen-Karten

Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Dies legt eindeutig einen hohen Stellenwert auf die Zeit des Händlers und die Notwendigkeit, Fehler zu vermeiden. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte. Warum? Denn der Händler spart nicht nur Zeit, indem er seine neuen Ideen mit dem MQL5-Assistenten zusammenstellt, und reduziert Fehler durch doppelte Codierung erheblich. Er ist letztendlich so eingestellt, dass er seine Energie auf die wenigen kritischen Bereiche seiner Handelsphilosophie konzentriert.
preview
Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

In diesem Artikel werden wir ein mathematisches Modell zur Simulation der Preisbildung in mehreren Währungen erstellen und die Untersuchung des Diversifizierungsprinzips als Teil der Suche nach Mechanismen zur Steigerung der Handelseffizienz abschließen, die ich im vorherigen Artikel mit theoretischen Berechnungen begonnen habe.
preview
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 03): Shannonsche Entropie

Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte.
preview
Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

In diesem Artikel werde ich Strategien für binäre Optionen in MetaTrader 5 überprüfen und optimieren.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 26): Gleitende Durchschnitte und der Hurst-Exponent

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 26): Gleitende Durchschnitte und der Hurst-Exponent

Der Hurst-Exponent ist ein Maß dafür, wie stark eine Zeitreihe auf lange Sicht autokorreliert. Es wird davon ausgegangen, dass sie die langfristigen Eigenschaften einer Zeitreihe erfasst und daher in der Zeitreihenanalyse auch außerhalb von wirtschaftlichen/finanziellen Zeitreihen eine gewisse Bedeutung hat. Wir konzentrieren uns jedoch auf den potenziellen Nutzen für Händler, indem wir untersuchen, wie diese Metrik mit gleitenden Durchschnitten gepaart werden kann, um ein potenziell robustes Signal zu bilden.
preview
Methoden von William Gann (Teil I): Erstellen des Gann Angles-Indikators

Methoden von William Gann (Teil I): Erstellen des Gann Angles-Indikators

Was ist das Wesen der Gann-Theorie? Wie werden Gann-Winkel konstruiert? Wir werden den Gann Angles-Indikator für MetaTrader 5 erstellen.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 18): Ticks und noch mehr Ticks (II).

Entwicklung eines Replay Systems — Marktsimulation (Teil 18): Ticks und noch mehr Ticks (II).

Offensichtlich sind die aktuellen Metriken sehr weit von der idealen Zeit für die Erstellung eines 1-Minuten-Balkens entfernt. Das ist das erste, was wir in Angriff nehmen werden. Die Behebung des Synchronisationsproblems ist nicht schwierig. Das mag schwierig erscheinen, ist aber eigentlich ganz einfach. Wir haben die erforderliche Korrektur im vorigen Artikel nicht vorgenommen, da er darauf abzielte, zu erklären, wie man die Tick-Daten, die zur Erstellung der 1-Minuten-Balken im Chart verwendet wurden, in das Fenster der Marktübersicht überträgt.
preview
Entwicklung eines Replay System (Teil 28): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Entwicklung eines Replay System (Teil 28): Expert Advisor Projekt — Die Klasse C_Mouse (II)

Als man begann, die ersten rechenfähigen Systeme zu entwickeln, war für alles die Mitwirkung von Ingenieuren erforderlich, die das Projekt sehr gut kennen mussten. Wir sprechen von den Anfängen der Computertechnologie, einer Zeit, in der es noch nicht einmal Terminals zum Programmieren gab. Im Laufe der Entwicklung, als immer mehr Menschen daran interessiert waren, etwas zu erschaffen, entstanden neue Ideen und Wege der Programmierung, die das frühere Wechseln der Steckverbindungen ersetzten. Zu diesem Zeitpunkt erschienen die ersten Terminals.
preview
Neuronale Netze leicht gemacht (Teil 54): Einsatz von Random Encoder für eine effiziente Forschung (RE3)

Neuronale Netze leicht gemacht (Teil 54): Einsatz von Random Encoder für eine effiziente Forschung (RE3)

Wann immer wir Methoden des Verstärkungslernens in Betracht ziehen, stehen wir vor dem Problem der effizienten Erkundung der Umgebung. Die Lösung dieses Problems führt häufig dazu, dass der Algorithmus komplizierter wird und zusätzliche Modelle trainiert werden müssen. In diesem Artikel werden wir einen alternativen Ansatz zur Lösung dieses Problems betrachten.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 08): Sperren des Indikators

Entwicklung eines Replay-Systems — Marktsimulation (Teil 08): Sperren des Indikators

In diesem Artikel werden wir uns ansehen, wie man den Indikator sperren kann, indem man einfach die Sprache MQL5 verwendet, und zwar auf eine sehr interessante und erstaunliche Weise.
preview
Datenwissenschaft und maschinelles Lernen (Teil 16): Ein frischer Blick auf die Entscheidungsbäume

Datenwissenschaft und maschinelles Lernen (Teil 16): Ein frischer Blick auf die Entscheidungsbäume

Tauchen wir ein in die komplizierte Welt der Entscheidungsbäume in der neuesten Folge unserer Serie über Datenwissenschaft und maschinelles Lernen. Dieser Artikel ist auf Händler zugeschnitten, die nach strategischen Einsichten suchen, und dient als umfassende Zusammenfassung, die die wichtige Rolle von Entscheidungsbäumen bei der Analyse von Markttrends beleuchtet. Wir erforschen die Wurzeln und Äste dieser algorithmischen Bäume und erschließen Sie deren Potenzial zur Verbesserung Ihrer Handelsentscheidungen. Erleben Sie mit uns eine erfrischende Perspektive auf Entscheidungsbäume und entdecken Sie, wie sie Ihnen bei der Navigation durch die Komplexität der Finanzmärkte behilflich sein können.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 6): Automatisieren der Auswahl einer Instanzgruppe

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 6): Automatisieren der Auswahl einer Instanzgruppe

Nach der Optimierung der Handelsstrategie erhalten wir eine Reihe von Parametern. Wir können sie verwenden, um mehrere Instanzen von Handelsstrategien zu erstellen, die in einem EA kombiniert werden. Früher haben wir das manuell gemacht. Hier werden wir versuchen, diesen Prozess zu automatisieren.
preview
Lernen Sie, wie man ein Handelssystem mit dem OBV entwickelt

Lernen Sie, wie man ein Handelssystem mit dem OBV entwickelt

Dies ist ein neuer Artikel, der unsere Serie für Anfänger fortsetzt, in der es darum geht, wie man ein Handelssystem basierend auf einigen der beliebten Indikatoren entwirft. Wir werden einen neuen Indikator kennenlernen, nämlich das On Balance Volume (OBV), und wir werden lernen, wie wir ihn verwenden und ein darauf basierendes Handelssystem entwerfen können.
preview
Neuronale Netze leicht gemacht (Teil 56): Nuklearnorm als Antrieb für die Erkundung nutzen

Neuronale Netze leicht gemacht (Teil 56): Nuklearnorm als Antrieb für die Erkundung nutzen

Die Untersuchung der Umgebung beim Verstärkungslernen ist ein dringendes Problem. Wir haben uns bereits mit einigen Ansätzen beschäftigt. In diesem Artikel werden wir uns eine weitere Methode ansehen, die auf der Maximierung der Nuklearnorm beruht. Es ermöglicht den Agenten, Umgebungszustände mit einem hohen Maß an Neuartigkeit und Vielfalt zu erkennen.
preview
Neuronale Netze leicht gemacht (Teil 66): Explorationsprobleme beim Offline-Lernen

Neuronale Netze leicht gemacht (Teil 66): Explorationsprobleme beim Offline-Lernen

Modelle werden offline mit Daten aus einem vorbereiteten Trainingsdatensatz trainiert. Dies bietet zwar gewisse Vorteile, hat aber den Nachteil, dass die Informationen über die Umgebung stark auf die Größe des Trainingsdatensatzes komprimiert werden. Das wiederum schränkt die Möglichkeiten der Erkundung ein. In diesem Artikel wird eine Methode vorgestellt, die es ermöglicht, einen Trainingsdatensatz mit möglichst unterschiedlichen Daten zu füllen.
preview
Trianguläre Arbitrage mit Vorhersagen

Trianguläre Arbitrage mit Vorhersagen

Dieser Artikel vereinfacht die Dreiecksarbitrage und zeigt Ihnen, wie Sie mit Hilfe von Prognosen und spezieller Software intelligenter mit Währungen handeln können, selbst wenn Sie neu auf dem Markt sind. Sind Sie bereit, mit Expertise zu handeln?
preview
Neuronale Netze leicht gemacht (Teil 23): Aufbau eines Tools für Transfer Learning

Neuronale Netze leicht gemacht (Teil 23): Aufbau eines Tools für Transfer Learning

In dieser Artikelserie haben wir bereits mehr als einmal über Transfer Learning berichtet. In diesem Artikel schlage ich vor, diese Lücke zu schließen und einen genaueren Blick auf Transfer Learning zu werfen.
preview
Erstellen eines Market-Making-Algorithmus in MQL5

Erstellen eines Market-Making-Algorithmus in MQL5

Wie arbeiten die Market Maker? Betrachten wir dieses Problem und erstellen wir einen primitiven Market-Making-Algorithmus.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 02): Erste Versuche (II)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 02): Erste Versuche (II)

Diesmal wollen wir einen anderen Ansatz wählen, um das 1-Minuten-Ziel zu erreichen. Diese Aufgabe ist jedoch nicht so einfach, wie man vielleicht denkt.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 09): Nutzerdefinierte Ereignisse

Entwicklung eines Replay-Systems — Marktsimulation (Teil 09): Nutzerdefinierte Ereignisse

Hier sehen wir, wie nutzerdefinierte Ereignisse ausgelöst werden und wie der Indikator den Status des Wiedergabe-/Simulationsdienstes meldet.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 15): Die Geburt des SIMULATORS (V) - RANDOM WALK

Entwicklung eines Replay Systems — Marktsimulation (Teil 15): Die Geburt des SIMULATORS (V) - RANDOM WALK

In diesem Artikel werden wir die Entwicklung eines Simulators für unser System abschließen. Das Hauptziel besteht darin, den im vorherigen Artikel beschriebenen Algorithmus zu konfigurieren. Dieser Algorithmus zielt darauf ab, eine zufällige Bewegung, einen „RANDOM WALK“ zu erzeugen. Um das heutige Material zu verstehen, ist es daher notwendig, den Inhalt der früheren Artikel zu kennen. Wenn Sie die Entwicklung des Simulators nicht verfolgt haben, empfehle ich Ihnen, diese Sequenz von Anfang an zu lesen. Andernfalls könnten Sie verwirrt sein über das, was hier erklärt wird.
preview
Integrieren Sie Ihr eigenes LLM in EA (Teil 4): Trainieren Sie Ihr eigenes LLM mit GPU

Integrieren Sie Ihr eigenes LLM in EA (Teil 4): Trainieren Sie Ihr eigenes LLM mit GPU

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview
Modified Grid-Hedge EA in MQL5 (Part III): Optimizing Simple Hedge Strategy (I)

Modified Grid-Hedge EA in MQL5 (Part III): Optimizing Simple Hedge Strategy (I)

In this third part, we revisit the Simple Hedge and Simple Grid Expert Advisors (EAs) developed earlier. Our focus shifts to refining the Simple Hedge EA through mathematical analysis and a brute force approach, aiming for optimal strategy usage. This article delves deep into the mathematical optimization of the strategy, setting the stage for future exploration of coding-based optimization in later installments.
preview
Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 11): System von Kreuzaufträgen

Einen handelnden Expert Advisor von Grund auf neu entwickeln (Teil 11): System von Kreuzaufträgen

In diesem Artikel werden wir ein System von Kreuzaufträgen (cross order system) erstellen. Es gibt eine Art von Vermögenswerten, die den Händlern das Leben sehr schwer macht - Terminkontrakte. Aber warum machen sie einem das Leben schwer?
preview
Neuronale Netze leicht gemacht (Teil 60): Online Decision Transformer (ODT)

Neuronale Netze leicht gemacht (Teil 60): Online Decision Transformer (ODT)

Die letzten beiden Artikel waren der Decision-Transformer-Methode gewidmet, die Handlungssequenzen im Rahmen eines autoregressiven Modells der gewünschten Belohnungen modelliert. In diesem Artikel werden wir uns einen weiteren Optimierungsalgorithmus für diese Methode ansehen.
preview
Wie man ein volatilitätsbasiertes Handelssystem (Chaikin Volatility - CHV) aufbaut und optimiert

Wie man ein volatilitätsbasiertes Handelssystem (Chaikin Volatility - CHV) aufbaut und optimiert

In diesem Artikel werden wir einen weiteren, volatilitätsbasierten Indikator namens Chaikin Volatility vorstellen. Wir werden verstehen, wie man einen nutzerdefinierten Indikator erstellt, nachdem wir herausgefunden haben, wie er verwendet und aufgebaut werden kann. Wir werden einige einfache Strategien vorstellen, die verwendet werden können, und sie dann testen, um zu verstehen, welche davon besser sein kann.
preview
Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)

Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)

In diesem Artikel werfen wir einen Blick auf einen weiteren Ansatz des Reinforcement Learning. Es wird als Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen) bezeichnet. Bei diesem Ansatz wird ein Agent darauf trainiert, verschiedene Ziele in bestimmten Szenarien zu erreichen.