Entwicklung eines Replay-Systems (Teil 61): Den Dienst abspielen (II)
In diesem Artikel werden wir uns mit Änderungen befassen, die einen effizienteren und sichereren Betrieb des Replay-/Simulationssystems ermöglichen. Ich möchte auch nicht die Aufmerksamkeit derjenigen vernachlässigen, die das Beste durch die Verwendung von Klassen machen wollen. Darüber hinaus werden wir ein spezielles Problem in MQL5 betrachten, das die Codeleistung bei der Arbeit mit Klassen verringert, und erklären, wie man es lösen kann.
Neuronale Netze im Handel: Verringerung des Speicherverbrauchs mit der Adam-mini-Optimierung
Eine der Möglichkeiten zur Steigerung der Effizienz des Modelltrainings und des Konvergenzprozesses ist die Verbesserung der Optimierungsmethoden. Adam-mini ist eine adaptive Optimierungsmethode, die den grundlegenden Adam-Algorithmus verbessern soll.
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 61): Verwendung von ADX- und CCI-Mustern mit überwachtem Lernen
Die Oszillatoren ADX und CCI sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir sehen uns an, wie dies durch die Verwendung aller 3 Haupttrainingsarten des maschinellen Lernens systematisiert werden kann. Die Wizard Assembled Expert Advisors ermöglichen es uns, die von diesen beiden Indikatoren dargestellten Muster zu bewerten, und wir beginnen damit, zu untersuchen, wie Supervised-Learning auf diese Muster angewendet werden kann.
Entwicklung des Price Action Analysis Toolkit (Teil 35): Training und Einsatz von Vorhersagemodellen
Historische Daten sind alles andere als „Müll“ – sie sind die Grundlage für jede solide Marktanalyse. In diesem Artikel führen wir Sie Schritt für Schritt von der Erfassung der Historie über die Verwendung zur Erstellung eines Prognosemodells bis hin zum Einsatz dieses Modells für Live-Preisprognosen. Lesen Sie weiter, um zu erfahren, wie!
Formulierung eines dynamischen Multi-Pair EA (Teil 2): Portfolio-Diversifizierung und -Optimierung
Portfolio-Diversifizierung und -Optimierung sorgt für eine strategische Streuung der Anlagen auf mehrere Vermögenswerte, um das Risiko zu minimieren und gleichzeitig die ideale Mischung von Vermögenswerten auszuwählen, um die Renditen auf der Grundlage risikobereinigter Performance-Kennzahlen zu maximieren.
Nachrichtenhandel leicht gemacht (Teil 6): Ausführen des Handels (III)
In diesem Artikel wird die Nachrichtenfilterung für einzelne Nachrichtenereignisse auf der Grundlage ihrer IDs implementiert. Darüber hinaus werden frühere SQL-Abfragen verbessert, um zusätzliche Informationen zu liefern oder die Laufzeit der Abfrage zu verkürzen. Außerdem wird der in den vorangegangenen Artikeln erstellte Code funktionsfähig gemacht.
Handel mit dem MQL5 Wirtschaftskalender (Teil 10): Bewegliches Dashboard und interaktive Hover-Effekte für eine reibungslose Nachrichten-Navigation
In diesem Artikel verbessern wir den MQL5-Wirtschaftskalender, indem wir ein bewegliches Dashboard einführen, mit dem wir die Schnittstelle für eine bessere Sichtbarkeit der Charts neu positionieren können. Wir implementieren Hover-Effekte für Schaltflächen, um die Interaktivität zu verbessern und eine nahtlose Navigation mit einer dynamisch positionierten Bildlaufleiste zu gewährleisten.
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 74): Verwendung von Ichimoku-Mustern und ADX-Wilder mit überwachtem Lernen
Wir knüpfen an unseren letzten Artikel an, in dem wir das Indikatorenpaar Ichimoku und ADX vorstellten, und untersuchen, wie dieses Duo durch überwachtes Lernen verbessert werden kann. Ichimoku und ADX sind ein Unterstützungs-/Widerstands- und komplementäres Paar bezüglich eines Trends. Unser überwachter Lernansatz verwendet ein neuronales Netzwerk, das den Deep Spectral Mixture Kernel einsetzt, um die Prognosen dieses Indikatorpaares zu verfeinern. Wie üblich erfolgt dies in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten zur Zusammenstellung eines Expert Advisors arbeitet.
Entwicklung des Price Action Analysis Toolkit (Teil 37): Sentiment Tilt Meter
Die Marktstimmung ist eine der am meisten übersehenen, aber dennoch mächtigen Kräfte, die die Kursentwicklung beeinflussen. Während sich die meisten Händler auf nachlaufende Indikatoren oder Vermutungen verlassen, verwandelt der Sentiment Tilt Meter (STM) EA rohe Marktdaten in klare, visuelle Hinweise, die in Echtzeit anzeigen, ob der Markt nach oben oder unten tendiert oder neutral bleibt. Dies erleichtert die Bestätigung von Geschäften, die Vermeidung von Fehleinstiegen und eine bessere Zeitplanung der Marktteilnahme.
Trendstärke- und Richtungsindikator auf 3D-Balken
Wir werden einen neuen Ansatz zur Markttrendanalyse betrachten, der auf einer dreidimensionalen Visualisierung und Tensoranalyse der Marktmikrostruktur basiert.
Aufbau eines professionellen Handelssystems mit Heikin Ashi (Teil 1): Entwickeln eines nutzerdefinierten Indikators
Dieser Artikel ist der erste Teil einer zweiteiligen Serie, die praktische Fähigkeiten und Best Practices für das Schreiben von nutzerdefinierten Indikatoren in MQL5 vermitteln soll. Anhand des Heikin Ashi als Arbeitsbeispiel untersucht der Artikel die Theorie hinter den Heikin Ashi-Charts, erklärt, wie Heikin Ashi-Kerzen berechnet werden, und demonstriert ihre Anwendung in der technischen Analyse. Das Herzstück ist eine schrittweise Anleitung zur Entwicklung eines voll funktionsfähigen Heikin Ashi-Indikators von Grund auf, mit klaren Erklärungen, die dem Leser helfen zu verstehen, was zu programmieren ist und warum. Dieses Grundwissen bildet die Grundlage für den zweiten Teil, in dem wir einen Expert Advisor erstellen werden, der auf der Grundlage der Heikin Ashi-Logik handelt.
Marktsimulation (Teil 01): Kreuzaufträge (I)
Heute beginnen wir mit der zweiten Phase, in der wir uns mit dem Replay-/Simulationssystem beschäftigen werden. Zunächst zeigen wir eine mögliche Lösung für Kreuzaufträge. Ich werde Ihnen die Lösung zeigen, aber sie ist noch nicht endgültig. Es wird eine mögliche Lösung für ein Problem sein, das wir in naher Zukunft lösen müssen.
Neuronale Netze leicht gemacht (Teil 97): Modelle mit MSFformer trainieren
Bei der Erforschung verschiedener Modellarchitekturen wird dem Prozess des Modelltrainings oft nicht genügend Aufmerksamkeit geschenkt. In diesem Artikel möchte ich diese Lücke schließen.
Neuronale Netze im Handel: Verbesserung des Wirkungsgrads des Transformers durch Verringerung der Schärfe (SAMformer)
Das Training von Transformer-Modellen erfordert große Datenmengen und ist oft schwierig, da die Modelle nicht gut auf kleine Datensätze verallgemeinert werden können. Der SAMformer-Rahmen hilft bei der Lösung dieses Problems, indem er schlechte lokale Minima vermeidet. Dadurch wird die Effizienz der Modelle auch bei begrenzten Trainingsdaten verbessert.
Datenwissenschaft und ML (Teil 46): Aktienmarktprognosen mit N-BEATS in Python
N-BEATS ist ein revolutionäres Deep-Learning-Modell, das für die Prognose von Zeitreihen entwickelt wurde. Es wurde veröffentlicht, um die klassischen Modelle für Zeitreihenprognosen wie ARIMA, PROPHET, VAR usw. zu übertreffen. In diesem Artikel werden wir dieses Modell erörtern und es für die Vorhersage des Aktienmarktes verwenden.
Statistische Arbitrage durch kointegrierte Aktien (Teil 3): Datenbank-Einrichtung
In diesem Artikel wird ein Beispiel für die Implementierung eines MQL5-Dienstes zur Aktualisierung einer neu erstellten Datenbank vorgestellt, die als Quelle für die Datenanalyse und für den Handel mit einem Korb kointegrierter Aktien dient. Der Grundgedanke des Datenbankentwurfs wird ausführlich erläutert und das Datenwörterbuch wird als Referenz dokumentiert. MQL5- und Python-Skripte werden für die Erstellung der Datenbank, die Initialisierung des Schemas und die Eingabe der Marktdaten bereitgestellt.
Atmosphere Clouds Model Optimization (ACMO): Theorie
Der Artikel ist dem metaheuristischen Algorithmus der Optimierung des Atmosphärenwolkenmodells (ACMO) gewidmet, der das Verhalten von Wolken simuliert, um Optimierungsprobleme zu lösen. Der Algorithmus nutzt die Prinzipien der Wolkenerzeugung, -bewegung und -ausbreitung und passt sich den „Wetterbedingungen“ im Lösungsraum an. Der Artikel zeigt, wie die meteorologische Simulation des Algorithmus optimale Lösungen in einem komplexen Möglichkeitsraum findet, und beschreibt detailliert die Phasen des ACMO-Betriebs, einschließlich der Vorbereitung des „Himmels“, der Wolkenentstehung, der Wolkenbewegung und der Regenkonzentration.
Vom Neuling zum Experten: Entmystifizierung versteckter Fibonacci-Retracement-Levels
In diesem Artikel untersuchen wir einen datengestützten Ansatz zur Ermittlung und Validierung von nicht standardmäßigen Fibonacci-Retracement-Levels, die von den Märkten möglicherweise respektiert werden. Wir stellen einen kompletten Arbeitsablauf vor, der auf die Implementierung in MQL5 zugeschnitten ist, beginnend mit der Datenerfassung und der Balken- oder Swing-Erkennung, bis hin zum Clustering, statistischen Hypothesentests, Backtesting und der Integration in ein MetaTrader 5 Fibonacci-Tool. Das Ziel ist es, eine reproduzierbare Pipeline zu erstellen, die anekdotische Beobachtungen in statistisch vertretbare Handelssignale umwandelt.
Entwicklung eines Replay Systems (Teil 58): Wiederaufnahme der Arbeit am Dienst
Nach einer Pause in der Entwicklung und Verbesserung des Dienstes für Replay/Simulator nehmen wir die Arbeit daran wieder auf. Da wir nun die Verwendung von Ressourcen wie Terminalglobals aufgegeben haben, müssen wir einige Teile des Systems komplett umstrukturieren. Keine Sorge, dieser Prozess wird im Detail erklärt, sodass jeder die Entwicklung unseres Dienstes verfolgen kann.
Entwicklung des Price Action Analysis Toolkit (Teil 34): Umwandlung von Marktrohdaten in Prognosemodellen mithilfe einer fortschrittlichen Pipeline der Datenerfassung
Haben Sie schon einmal einen plötzlichen Marktanstieg verpasst oder wurden Sie von einem solchen überrascht? Der beste Weg, aktuelle Ereignisse zu antizipieren, besteht darin, aus historischen Mustern zu lernen. Mit dem Ziel, ein ML-Modell zu trainieren, zeigt Ihnen dieser Artikel zunächst, wie Sie ein Skript in MetaTrader 5 erstellen, das historische Daten aufnimmt und sie zur Speicherung an Python sendet. Lesen Sie weiter, um die einzelnen Schritte in Aktion zu sehen.
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 79): Verwendung von Gator-Oszillator und Akkumulations-/Distributions-Oszillator mit überwachtem Lernen
Im letzten Beitrag haben wir die Paarung von Gator-Oszillator und Akkumulations-/Distributions-Oszillator in ihrer typischen Einstellung der von ihnen erzeugten Rohsignale betrachtet. Diese beiden Indikatoren sind als Trend- bzw. Volumenindikatoren zu verstehen. Im Anschluss an diesen Teil untersuchen wir die Auswirkungen, die das überwachte Lernen auf die Verbesserung einiger der von uns untersuchten Merkmalsmuster haben kann. Unser überwachter Lernansatz ist ein CNN, der mit Kernelregression und Skalarproduktähnlichkeit arbeitet, um seine Kernel und Kanäle zu dimensionieren. Wie immer tun wir dies in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.
Neuronale Netze im Handel: Modelle mit Wavelet-Transformation und Multitasking-Aufmerksamkeit (letzter Teil)
Im vorangegangenen Artikel haben wir die theoretischen Grundlagen erforscht und mit der Umsetzung der Ansätze des Systems Multitask-Stockformer begonnen, das die Wavelet-Transformation und das Self-Attention-Multitask-Modell kombiniert. Wir fahren fort, die Algorithmen dieses Rahmens zu implementieren und ihre Effektivität anhand realer historischer Daten zu bewerten.
Automatisieren von Handelsstrategien in MQL5 (Teil 35): Erstellung eines Blockausbruch-Handelssystems
In diesem Artikel erstellen wir ein Block-Ausbruchssytems in MQL5, das Konsolidierungsbereiche identifiziert, Ausbrüche erkennt und Ausbruchsblöcke mit Umkehrpunkten validiert, um Retests mit definierten Risikoparametern zu handeln. Das System visualisiert Auftrags- und Ausbruchsblöcke mit dynamischen Kennzeichnungen und Pfeilen und unterstützt den automatisierten Handel und Trailing Stops.
Entwicklung des Price Action Analysis Toolkit (Teil 40): Markt-DNA-Pass
In diesem Artikel wird die einzigartige Identität der einzelnen Währungspaare anhand ihrer historischen Kursentwicklung untersucht. Inspiriert vom Konzept der genetischen DNA, die den individuellen Bauplan eines jeden Lebewesens kodiert, wenden wir einen ähnlichen Rahmen auf die Märkte an, indem wir die Kursentwicklung als „DNA“ eines jeden Paares betrachten. Durch die Aufschlüsselung struktureller Verhaltensweisen wie Volatilität, Schwankungen, Rückschritte, Ausschläge und Sitzungsmerkmale zeigt das Tool das zugrunde liegende Profil, das ein Paar von einem anderen unterscheidet. Dieser Ansatz bietet einen tieferen Einblick in das Marktverhalten und gibt Händlern eine strukturierte Methode an die Hand, um ihre Strategien auf die natürlichen Tendenzen der einzelnen Instrumente abzustimmen.
Entwicklung eines Replay Systems (Teil 55): Steuermodul
In diesem Artikel werden wir einen Kontrollindikator implementieren, damit er in das von uns entwickelte Nachrichtensystem integriert werden kann. Obwohl es nicht sehr schwierig ist, gibt es einige Details, die bei der Initialisierung dieses Moduls beachtet werden müssen. Das hier vorgestellte Material dient ausschließlich zu Bildungszwecken. Es sollte auf keinen Fall als Anwendung für einen anderen Zweck als das Lernen und Beherrschen der gezeigten Konzepte betrachtet werden.
Neuronale Netze im Handel: Ein hybrider Handelsrahmen mit prädiktiver Kodierung (StockFormer)
In diesem Artikel wird das hybride Handelssystem StockFormer vorgestellt, das die Algorithmen von Predictive Coding und dem Reinforcement Learning (RL) kombiniert. Das Framework verwendet 3 Transformer-Zweige mit einem integrierten Diversified Multi-Head Attention (DMH-Attn)-Mechanismus, der das ursprüngliche Aufmerksamkeitsmodul mit einem mehrköpfigen Block des Vorwärtsdurchlaufs verbessert und es ermöglicht, diverse Zeitreihenmuster über verschiedene Teilräume hinweg zu erfassen.
Aufbau eines professionellen Handelssystems mit Heikin Ashi (Teil 2): Entwicklung eines EA
Dieser Artikel erklärt, wie man einen professionellen Heikin Ashi-basierten Expert Advisor (EA) in MQL5 entwickelt. Sie werden lernen, wie man Eingabeparameter, Enumerationen, Indikatoren und globale Variablen einrichtet und die zentrale Handelslogik implementiert. Sie können auch einen Backtest mit Gold durchführen, um Ihre Arbeit zu überprüfen.
Neuronale Netze im Handel: Ein Multi-Agent Self-Adaptive Modell (letzter Teil)
Im vorangegangenen Artikel haben wir das adaptive Multi-Agenten-System MASA vorgestellt, das Reinforcement-Learning-Ansätze und selbstanpassende Strategien kombiniert und so ein harmonisches Gleichgewicht zwischen Rentabilität und Risiko unter turbulenten Marktbedingungen ermöglicht. Wir haben die Funktionalität der einzelnen Agenten in diesem Rahmen aufgebaut. In diesem Artikel setzen wir die begonnene Arbeit fort und bringen sie zu einem logischen Abschluss.
Diskretisierungsmethoden für Preisbewegungen in Python
Wir werden uns die Preisdiskretisierungsmethoden mit Python und MQL5 ansehen. In diesem Artikel werde ich meine praktischen Erfahrungen mit der Entwicklung einer Python-Bibliothek teilen, die eine breite Palette von Ansätzen zur Balkenbildung implementiert – von klassischen Volumen- und Range Bars bis hin zu exotischeren Methoden wie Renko und Kagi. Wir werden Drei-Linien-Durchbruchskerzen und Range-Bars betrachten, ihre Statistiken analysieren und versuchen zu definieren, wie die Preise sonst noch diskret dargestellt werden können.
Statistische Arbitrage durch kointegrierte Aktien (Teil 2): Expert Advisor, Backtests und Optimierung
In diesem Artikel wird eine Beispielimplementierung eines Expert Advisors für den Handel mit einem Korb von vier Nasdaq-Aktien vorgestellt. Die Aktien wurden zunächst anhand von Pearson-Korrelationstests gefiltert. Die gefilterte Gruppe wurde dann mit Johansen-Tests auf Kointegration geprüft. Schließlich wurde der kointegrierte Spread mit dem ADF- und dem KPSS-Test auf Stationarität geprüft. Hier sehen wir einige Anmerkungen zu diesem Prozess und die Ergebnisse der Backtests nach einer kleinen Optimierung.
Automatisieren von Handelsstrategien in MQL5 (Teil 31): Erstellung eines Price Action 3 Drives Harmonic Pattern Systems
In diesem Artikel entwickeln wir ein 3 Drives Pattern System in MQL5, das steigende und fallende harmonische Muster der 3 Drives mit Umkehrpunkten und Fibonacci-Verhältnissen identifiziert und Handelsgeschäfte mit anpassbaren Einstiegs-, Stop-Loss- und Take-Profit-Levels basierend auf vom Nutzer ausgewählten Optionen ausführt. Wir verbessern den Einblick des Händlers mit visuellem Feedback durch Chart-Objekte.
Der Algorithmus Atomic Orbital Search (AOS) Modifizierung
Im zweiten Teil des Artikels werden wir die Entwicklung einer modifizierten Version des AOS-Algorithmus (Atomic Orbital Search) fortsetzen und uns dabei auf bestimmte Operatoren konzentrieren, um seine Effizienz und Anpassungsfähigkeit zu verbessern. Nach einer Analyse der Grundlagen und der Mechanik des Algorithmus werden wir Ideen zur Verbesserung seiner Leistung und seiner Fähigkeit, komplexe Lösungsräume zu analysieren, diskutieren und neue Ansätze zur Erweiterung seiner Funktionalität als Optimierungswerkzeug vorschlagen.
Neuronale Netze im Handel: Ein Ensemble von Agenten mit Aufmerksamkeitsmechanismen (letzter Teil)
Im vorangegangenen Artikel haben wir das adaptive System MASAAT der Multi-Agenten vorgestellt, das ein Ensemble von Agenten verwendet, um eine Kreuzanalyse von multimodalen Zeitreihen auf verschiedenen Datenskalen durchzuführen. Heute werden wir die Ansätze dieses Rahmens in MQL5 weiter umsetzen und diese Arbeit zu einem logischen Abschluss bringen.
Aufbau eines Handelssystems (Teil 3): Bestimmung des Mindestrisikoniveaus für realistische Gewinnziele
Das oberste Ziel eines jeden Händlers ist die Rentabilität. Deshalb setzen sich viele Händler bestimmte Gewinnziele, die sie innerhalb einer bestimmten Handelsperiode erreichen wollen. In diesem Artikel werden wir Monte-Carlo-Simulationen verwenden, um den optimalen Risikoprozentsatz pro Handel zu bestimmen, der erforderlich ist, um die Handelsziele zu erreichen. Die Ergebnisse helfen den Händlern zu beurteilen, ob ihre Gewinnziele realistisch oder zu ehrgeizig sind. Schließlich werden wir erörtern, welche Parameter angepasst werden können, um einen praktischen Risikoprozentsatz pro Handel festzulegen, der mit den Handelszielen übereinstimmt.
Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 01): Aufbau der SQLite3-Bibliothek, inspiriert von Python
Das Modul sqlite3 in Python bietet einen unkomplizierten Ansatz für die Arbeit mit SQLite-Datenbanken, es ist schnell und bequem. In diesem Artikel werden wir ein ähnliches Modul auf den integrierten MQL5-Funktionen für die Arbeit mit Datenbanken aufbauen, um die Arbeit mit SQLite3-Datenbanken in MQL5 wie in Python zu erleichtern.
MQL5-Handelswerkzeuge (Teil 6): Dynamisches holografisches Dashboard mit Impulsanimationen und Steuerelementen
In diesem Artikel erstellen wir ein dynamisches holografisches Dashboard in MQL5 zur Überwachung von Symbolen und Zeitrahmen mit RSI, Volatilitätswarnungen und Sortieroptionen. Wir fügen eine pulsierende Animationen, interaktive Schaltflächen und holografische Effekte hinzu, um das Tool visuell ansprechend und reaktionsschnell zu gestalten.
MQL5-Handelswerkzeuge (Teil 8): Verbessertes informatives Dashboard mit verschiebbaren und minimierbaren Funktionen
In diesem Artikel entwickeln wir ein erweitertes Informations-Dashboard, das den vorigen Teil durch die Hinzufügung von verschiebbaren und minimierbaren Funktionen für eine verbesserte Nutzerinteraktion aufwertet, während die Echtzeitüberwachung von Multi-Symbol-Positionen und Kontometrien beibehalten wird.
Entwicklung des Price Action Analysis Toolkit (Teil 38): Tick Buffer VWAP und Short-Window Imbalance Engine
In Teil 38 bauen wir ein produktionsreifes MT5-Überwachungspanel, das rohe Ticks in umsetzbare Signale umwandelt. Der EA puffert Tick-Daten, um VWAP auf Tick-Ebene, eine Ungleichgewichtsmetrik (Flow) in einen kurzzeitigen Fenster und ATR-basierte Positionsgrößen zu berechnen. Anschließend werden Spread, ATR und Flow mit flimmerarmen Balken visualisiert. Das System berechnet eine vorgeschlagene Losgröße und einen 1R-Stopp und gibt konfigurierbare Warnungen bei engen Spreads, starkem Flow und Randbedingungen aus. Der automatische Handel ist absichtlich deaktiviert; der Schwerpunkt liegt weiterhin auf einer robusten Signalgenerierung und einer sauberen Nutzererfahrung.
Marktsimulation (Teil 02): Kreuzaufträge (II)
Anders als im vorherigen Artikel werden wir hier die Auswahlmöglichkeit mit einem Expert Advisor testen. Dies ist zwar noch keine endgültige Lösung, aber für den Moment reicht es aus. Mit Hilfe dieses Artikels werden Sie verstehen, wie Sie eine der möglichen Lösungen umsetzen können.
Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 03): Zeitplan-Modul von Python, das OnTimer-Ereignis auf Steroiden
Das Schedule-Modul in Python bietet eine einfache Möglichkeit, wiederkehrende Aufgaben zu planen. Während MQL5 kein eingebautes Äquivalent hat, werden wir in diesem Artikel eine ähnliche Bibliothek implementieren, um die Einrichtung von zeitgesteuerten Ereignissen in MetaTrader 5 zu erleichtern.